Skip to main content
Log in

Multi-stable quantum droplets in optical lattices

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We address the nonlinear dynamics of binary Bose-Einstein condensates with mutually symmetric spinor components trapped in an optical lattice. The interaction between the repulsive Lee–Huang–Yang nonlinearity and the intercomponent attraction as well as Bragg scattering of an optical lattice results in formation of multi-peaked quantum droplets. Even- and odd-symmetric droplets can bifurcate from Bloch modes of the corresponding periodic systems. Linear stability analysis corroborated by direct evolution simulations reveals that even-symmetric droplets with different norms and different number of peaks can evolve stably at the same chemical potential, i.e., multi-stable droplets are possible in the present scheme. Besides the droplets in the semi-infinite gap, the properties of droplets in the first finite bandgap are also discussed. Both even- and odd-symmetric droplets are stable in almost their whole existence domains. We reveal that optical lattice plays an important role for the stabilization of droplets, in sharp contrast to the nonlinear system without a lattice modulation. We, thus, furnish a paradigmatic example of multi-stable quantum droplets held in optical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Petrov, D.S.: Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett. 115, 155302 (2015)

    Google Scholar 

  2. Petrov, D.S., Astrakharchik, G.E.: Ultradilute low-dimensional liquids. Phys. Rev. Lett. 117, 100401 (2016)

    Google Scholar 

  3. Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I., Pfau, T.: Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259 (2016)

    Google Scholar 

  4. Kartashov, Y.V., Konotop, V.V., Zezyulin, D.A., Torner, L.: Bloch oscillations in optical and zeeman lattices in the presence of spin-orbit coupling. Phys. Rev. Lett. 117, 215301 (2016)

    Google Scholar 

  5. Cabrera, C.R., Tanzi, L., Sanz, J., Naylor, N., Thomas, P., Cheiney, P.L.T.: Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359, 301 (2018)

    MathSciNet  Google Scholar 

  6. McDonald, G.D., Kuhn, C.C.N., Hardman, K.S., Bennetts, S., Everitt, P.J., Altin, P.A., Debs, J.E., Close, J.D., Robins, N.P.: Bright solitonic matter-wave interferometer. Phys. Rev. Lett. 113, 013002 (2014)

    Google Scholar 

  7. Bullough, R.K., Wadati, M.: Optical solitons and quantum solitons. J. Opt. B: Quantum Semiclassical Opt. 6(5), S205–S216 (2004)

    MathSciNet  Google Scholar 

  8. Lee, T.D., Huang, K., Yang, C.N.: Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957)

    MathSciNet  MATH  Google Scholar 

  9. Wächtler, F., Santos, L.: Ground-state properties and elementary excitations of quantum droplets in dipolar Bose–Einstein condensates. Phys. Rev. A 94, 043618 (2016)

    Google Scholar 

  10. Cikojević, V., Dželalija, K., Stipanović, P., Vranješ Markić, L., Boronat, J.: Ultradilute quantum liquid drops. Phys. Rev. B(R) 97, 140502 (2018)

    Google Scholar 

  11. Parisi, L., Astrakharchik, G.E., Giorgini, S.: Liquid state of one-dimensional Bose mixtures: a quantum Monte Carlo study. Phys. Rev. Lett. 122, 105302 (2019)

    Google Scholar 

  12. Bulgac, A.: Dilute quantum droplets. Phys. Rev. Lett. 89, 050402 (2002)

    Google Scholar 

  13. Kadau, H., Schmitt, M., Wenzel, M., Wink, C., Maier, T., Ferrier-Barbut, I., Pfau, T.: Observing the rosensweig instability of a quantum ferrofluid. Nature 530, 194 (2016)

    Google Scholar 

  14. Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M., Pfau, T.: Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016)

    Google Scholar 

  15. Semeghini, G., Ferioli, G., Masi, L., Mazzinghi, C., Wolswijk, L., Minardi, F., Modugno, M., Modugno, G., Inguscio, M., Fattori, M.: Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018)

    Google Scholar 

  16. Cheiney, P., Cabrera, C.R., Sanz, J., Naylor, B., Tanzi, L., Tarruell, L.: Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates. Phys. Rev. Lett. 120, 135301 (2018)

    Google Scholar 

  17. Kartashov, Y.V., Malomed, B.A., Torner, L.: Metastability of quantum droplet clusters. Phys. Rev. Lett. 122, 193902 (2019)

    Google Scholar 

  18. Edler, D., Mishra, C., Wächtler, F., Nath, R., Sinha, S., Santos, L.: Quantum fluctuations in quasi-one-dimensional dipolar Bose–Einstein condensates. Phys. Rev. Lett. 119, 050403 (2017)

    Google Scholar 

  19. Ferrier-Barbut, I., Wenzel, M., Böttcher, F., Langen, T., Isoard, M., Stringari, S., Pfau, T.: Scissors mode of dipolar quantum droplets of dysprosium atoms. Phys. Rev. Lett. 120, 160402 (2018)

    Google Scholar 

  20. Tanzi, L., Lucioni, E., Famà, F., Catani, J., Fioretti, A., Gabbanini, C., Bisset, R.N., Santos, L., Modugno, G.: Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019)

    Google Scholar 

  21. Crasovan, L.C., Malomed, B.A., Mihalache, D.: Supersolidity around a critical point in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 123, 015301 (2019)

    Google Scholar 

  22. Böttcher, F., Schmidt, J.N., Wenzel, M., Hertkorn, J., Guo, M., Langen, T., Pfau, T.: Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019)

    Google Scholar 

  23. Wang, Y., Guo, L., Yi, S., Shi, T.: Theory for self-bound states of dipolar Bose-Einstein condensates (2020)

  24. Jørgensen, N.B., Bruun, G.M., Arlt, J.J.: Dilute fluid governed by quantum fluctuations. Phys. Rev. Lett. 121, 173403 (2018)

    Google Scholar 

  25. Cui, X.: Spin-orbit-coupling-induced quantum droplet in ultracold Bose–Fermi mixtures. Phys. Rev. A 98, 023630 (2018)

    Google Scholar 

  26. Li, Y., Chen, Z., Luo, Z., Huang, C., Tan, H., Pang, W., Malomed, B.A.: Two-dimensional vortex quantum droplets. Phys. Rev. A 98, 063602 (2018)

    Google Scholar 

  27. Astrakharchik, G.E., Malomed, B.A.: Dynamics of one-dimensional quantum droplets. Phys. Rev. A 98, 013631 (2018)

    Google Scholar 

  28. Ferioli, G., Semeghini, G., Masi, L., Giusti, G., Modugno, G., Inguscio, M., Gallemí, A., Recati, A., Fattori, M.: Collisions of self-bound quantum droplets. Phys. Rev. Lett. 122, 090401 (2019)

    Google Scholar 

  29. Zhou, Z., Yu, X., Zou, Y., Zhong, H.: Dynamics of quantum droplets in a one-dimensional optical lattice. Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, X., Xu, X., Zheng, Y., Chen, Z., Liu, B., Huang, C., Malomed, B.A., Li, Y.: Semidiscrete quantum droplets and vortices. Phys. Rev. Lett. 123, 133901 (2019)

    Google Scholar 

  31. Liu, B., Zhang, H.F., Zhong, R.X., Zhang, X.L., Qin, X.Z., Huang, C., Li, Y.Y., Malomed, B.A.: Symmetry breaking of quantum droplets in a dual-core trap. Phys. Rev. A 99, 053602 (2019)

    Google Scholar 

  32. Tengstrand, M.N., Stürmer, P., Karabulut, E.O., Reimann, S.M.: Rotating binary Bose–Einstein condensates and vortex clusters in quantum droplets. Phys. Rev. Lett. 123, 160405 (2019)

    Google Scholar 

  33. D’Errico, C., Burchianti, A., Prevedelli, M., Salasnich, L., Ancilotto, F., Modugno, M., Minardi, F., Fort, C.: Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Research 1, 033155 (2019)

    Google Scholar 

  34. Thiruvalluvar, R.T., Sabari, S., Porsezian, K., Muruganandam, P.: Vortex formation and vortex lattices in a Bose–Einstein condensate with Lee–Huang–Yang (LHY) correction. Physica E 107, 54–59 (2019)

    Google Scholar 

  35. Fleischer, J.W., Segev, M., Efremidis, N.K., Christodoulides, D.N.: Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147 (2003)

    Google Scholar 

  36. Ostrovskaya, E.A., Kivshar, Y.S.: Matter-wave gap solitons in atomic band-gap structures. Phys. Rev. Lett. 90, 160407 (2003)

    Google Scholar 

  37. Morsch, O., Oberthaler, M.: Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 78, 179–215 (2006)

    Google Scholar 

  38. Lederer, F., Stegeman, G.I., Christodoulides, D.N., Assanto, G., Segev, M., Silberberg, Y.: Discrete solitons in optics. Phys. Rep. 463, 1 (2008)

    Google Scholar 

  39. Paredes, B., Widera, A., Murg, V., Mandel, O., Fölling, S., Cirac, I., Shlyapnikov, G.V., Hänsch, T.W., Bloch, I.: Tonks-girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    Google Scholar 

  40. Cheng, J.X., Xu, S.L., Belić, M.R., Li, H., Zhao, Y., Deng, W.W., Sun, Y.Z.: Multipole solitons in a cold atomic gas with a parity-time symmetric potential. Nonlinear Dyn. 95(3), 2325–2332 (2019)

    MATH  Google Scholar 

  41. Djoufack, Z., Fotsa-Ngaffo, F., Tala-Tebue, E., Fendzi-Donfack, E., Kapche-Tagne, F.: Modulational instability in addition to discrete breathers in 2D quantum ultracold atoms loaded in optical lattices. Nonlinear Dyn. 98(3), 1905–1918 (2019)

    MATH  Google Scholar 

  42. Dong, L., Huang, C.: Vortex solitons in fractional systems with partially parity-time-symmetric azimuthal potentials. Nonlinear Dyn. 98(2), 1019–1028 (2019)

    Google Scholar 

  43. Laburthe-Tolra, B.: A strange kind of liquid. Nature 539, 176 (2016)

    Google Scholar 

  44. Crasovan, L.C., Malomed, B.A., Mihalache, D.: Erupting, flat-top, and composite spiral solitons in the two-dimensional Ginzburg–Landau equation. Phys. Lett. A 289(1), 59–65 (2001)

    MathSciNet  MATH  Google Scholar 

  45. Dong, L., Ye, F., Wang, J., Li, Y.: Internal modes of localized optical vortex soliton in a cubic-quintic nonlinear medium. Physica D 194(3), 219–226 (2004)

    MATH  Google Scholar 

  46. Wang, J., Ye, F., Dong, L., Cai, T., Li, Y.P.: Lattice solitons supported by competing cubic-quintic nonlinearity. Phys. Lett. A 339, 74–82 (2005)

    MATH  Google Scholar 

  47. Li, C., Liu, H., Dong, L.: Multi-stable solitons in PT-symmetric optical lattices. Opt. Express 20(15), 16823–16831 (2012)

    Google Scholar 

  48. Dong, L., Huang, C., Qi, W.: Symmetry breaking and restoration of symmetric solitons in partially parity-time-symmetric potentials. Nonlinear Dyn. 98(3), 1701–1708 (2019)

    MATH  Google Scholar 

  49. Zeng, L., Zeng, J.: One-dimensional gap solitons in quintic and cubic-quintic fractional nonlinear schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn. 98(2), 985–995 (2019)

    Google Scholar 

  50. Yang, J.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)

    MATH  Google Scholar 

  51. Gisin, B.V., Driben, R., Malomed, B.A.: Bistable guided solitons in the cubic–quintic medium. J. Opt. B Quantum Semiclass. Opt. 6(5), S259–S264 (2004)

    Google Scholar 

  52. Zhang, Y., Wu, B.: Composition relation between gap solitons and Bloch waves in nonlinear periodic systems. Phys. Rev. Lett. 102, 093905 (2009)

    Google Scholar 

  53. Dong, L., Huang, C.: Composition relation between nonlinear bloch waves and gap solitons in periodic fractional systems. Materials 11(7), 1134 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2019JM-307) and National Natural Science Foundation of China (NSFC) (Granted No. 11805116, 11704339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangwei Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Qi, W., Peng, P. et al. Multi-stable quantum droplets in optical lattices. Nonlinear Dyn 102, 303–310 (2020). https://doi.org/10.1007/s11071-020-05967-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05967-y

Keywords

Navigation