Skip to main content
Log in

Progress and Challenges of Sub-Kelvin Sorption Cooler and Its Prospects for Space Application

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The helium sorption cooler plays an important role in both ground and space application because it does not require a magnetic field and is not dependent on gravity. At present, one research focus of sorption cooler is the development of multistage to overcome the disadvantages of the originally developed single-stage structure. The other focus is the development of continuous sorption cooler. Although the sorption cooler has been widely employed in astronomy and Earth atmospherics sciences, space mission and other fields, there are still lots of technologies that can be further improved, such as superfluid film suppression, the development of high on–off ratio gas-gap heat switch and rapidly responsive sorption pump. This paper reviews the principle, structure and performance parameters of the sorption cooler and its suitability to the space application. In addition, the technical challenges and the efforts that scholars are trying will also be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Tartari, E.S. Battistelli, M. Piat et al., CMB science: opportunities for a cryogenic filter-bank spectrometer. J. Low Temp. Phys. 184(3–4), 780–785 (2016)

    ADS  Google Scholar 

  2. S.W. Henderson, R. Allison, J. Austermann et al., Advanced actpol cryogenic detector arrays and readout. J. Low Temp. Phys. 184(3–4), 772–779 (2016)

    ADS  Google Scholar 

  3. J. Hubmayr, J.E. Austermann, J.A. Beall et al., Low-temperature detectors for CMB imaging arrays. J. Low Temp. Phys. 193(3–4), 633–647 (2018)

    ADS  Google Scholar 

  4. R. Gualtieri, J.P. Filippini, P.A.R. Ade et al., SPIDER: CMB polarimetry from the edge of space. J. Low Temp. Phys. 193(5–6), 1112–1121 (2018)

    ADS  Google Scholar 

  5. J.P. Nibarger, J.A. Beall, D. Becker et al., An 84 pixel all-silicon corrugated feedhorn for CMB measurements. J. Low Temp. Phys. 167(3–4), 522–527 (2012)

    ADS  Google Scholar 

  6. P.M. Downey, A.D. Jeffries, S.S. Meyer et al., Monolithic silicon bolometers. Appl. Opt. 23(6), 910–914 (1984)

    ADS  Google Scholar 

  7. E.S. Cheng, S.S. Meyer, L.A. Page, A high capacity 0.23 K 3He refrigerator for balloon-borne payloads. Rev. Sci. Instrum. 67(11), 4008–4016 (1996)

    ADS  Google Scholar 

  8. J.M. Duval, P. Camus, M. Calvo et al., Development of an ADR refrigerator with two continuous stages. J. Low Temp. Phys. 184(3–4), 604–608 (2016)

    ADS  Google Scholar 

  9. M. Zheng, J. Quan, N. Wang et al., A brief review of dilution refrigerator development for space applications. J. Low Temp. Phys. 197(1–2), 1–9 (2019)

    ADS  Google Scholar 

  10. P. Kittel, 3He cooling systems for space - status report. NASA Technical Memorandum 85985 (1984)

  11. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, 2007)

    Google Scholar 

  12. T. Prouvé, J.M. Duval, I. Charles et al., ATHENA X-IFU 300 K-50 mK cryochain demonstrator cryostat. Cryogenics 89, 85–94 (2018)

    ADS  Google Scholar 

  13. N. Luchier, J.M. Duval, L. Duband et al., Performances of the 50 mK ADR/sorption cooler. Cryogenics 52(4–6), 152–157 (2012)

    ADS  Google Scholar 

  14. L. Duband, J.M. Duval, N. Luchier, SAFARI engineering model 50 mK cooler. Cryogenics 64, 213–219 (2014)

    ADS  Google Scholar 

  15. S. Oguri, H. Ishitsuka, J. Choi et al., Note: sub-Kelvin refrigeration with dry-coolers on a rotating system. Rev. Sci. Instrum. 85(8), 086101 (2014)

    ADS  Google Scholar 

  16. L. Duband, A. Ravex, A. Lange, A Miniature Adsorption3HE Refrigerator (CEA Centre d’Etudes de Grenoble, London, 1991)

    Google Scholar 

  17. S. Masi, E. Aquilini, P. Cardoni et al., A self-contained 3He refrigerator suitable for long duration balloon experiments. Cryogenics 38(3), 319–324 (1998)

    ADS  Google Scholar 

  18. M.M. Freund, L. Duband, A.E. Lange et al., Design and flight performance of a space borne 3He refrigerator for the infrared telescope in space. Cryogenics 38(4), 435–443 (1998)

    ADS  Google Scholar 

  19. M.J. Devlin, S.R. Dicker, J. Klein et al., A high capacity completely closed-cycle 250 mK 3He refrigeration system based on a pulse tube cooler. Cryogenics 44(9), 611–616 (2004)

    ADS  Google Scholar 

  20. P. de Bernardis, P. Ade, E. Aquilini, et al., BOOMERanG: balloon observations of millimetric extragalactic radiation and geophysics, in Microwave Background Anisotropies, ed. by F.R. Bouchet, R. Gispert, B. Guideroni, J.T.T. Van (eds), (1997), pp. 155–160

  21. J. Verveer, N. Rando, S. Andersson et al., Design and performance of a portable 3He cryogenic system for ground based instrumentation. Rev. Sci. Instrum. 70(10), 4088–4096 (1999)

    ADS  Google Scholar 

  22. L. Duband, A. Lange, J. Bock, Helium adsorption coolers for space. Submillimetre Far Infrared Space Instrum. 388, 289 (1996)

    ADS  Google Scholar 

  23. J.J. Bock, L. Duband, M. Kawada et al., 4He refrigerator for space. Cryogenics 34(8), 635–640 (1994)

    Google Scholar 

  24. B. Luo, Z. Wang, T. Yan et al., Design and implementation of a space sub-Kelvin sorption cooler. J. Astronaut. 36(7), 855–859 (2015)

    Google Scholar 

  25. L. Duband, B. Collaudin, Sorption coolers development at CEA-SBT. Cryogenics 39(8), 659–663 (1999)

    ADS  Google Scholar 

  26. L. Duband, L. Clerc, L. Guillemet et al., HERSCHEL Sorption Cooler Qualification Models//Cryocoolers 13 (Springer, Boston, 2005), pp. 543–551

    Google Scholar 

  27. L. Duband, L. Clerc, E. Ercolani et al., Herschel flight models sorption coolers. Cryogenics 48(3–4), 95–105 (2008)

    ADS  Google Scholar 

  28. G. Dall’Oglio, W. Fischer, L. Martinis et al., Improved 3He/4He refrigerator. Cryogenics 33(2), 213–214 (1993)

    ADS  Google Scholar 

  29. L. Duband, Double stage helium sorption coolers//Cryocoolers 11 (Springer, Boston, 2002), pp. 561–566

    Google Scholar 

  30. L. Duband, L. Clerc, A. Ravex, Socool: a 300 K–0.3 K pulse tube/sorption cooler. AIP Conf. Proc. AIP 613(1), 1233–1240 (2002)

    ADS  Google Scholar 

  31. R.S. Bhatia, S.T. Chase, S.F. Edgington et al., A three-stage helium sorption refrigerator for cooling of infrared detectors to 280 mK. Cryogenics 40(11), 685–691 (2000)

    ADS  Google Scholar 

  32. J.M. Duval, L. Duband, N. Luchier et al., 300 mK continuous cooling, sorption-ADR system. AIP Conf. Proc. AIP 1218(1), 625–632 (2010)

    ADS  Google Scholar 

  33. G.M. Klemencic, P.A.R. Ade, S. Chase et al., A continuous dry 300 mK cooler for THz sensing applications. Rev. Sci. Instrum. 87(4), 045107 (2016)

    ADS  Google Scholar 

  34. J. Lau, M. Benna, M. Devlin et al., Experimental tests and modeling of the optimal orifice size for a closed cycle 4He sorption refrigerator. Cryogenics 46(11), 809–814 (2006)

    ADS  Google Scholar 

  35. L. Duband, A Thermal Switch for Use at Liquid Helium Temperature in Space-Borne Cryogenic Systems//Cryocoolers 8 (Springer, Boston, 1995), pp. 731–741

    Google Scholar 

  36. D. Martins, I. Catarino, U. Schroder et al., Customizable Gas-Gap Heat Switch (American Institute of Physics Conference Series, New York, 2010)

    Google Scholar 

  37. I. Catarino, C. Paine, 3He gas gap heat switch. Cryogenics 51(1), 45–48 (2011)

    ADS  Google Scholar 

  38. J. Franco, D. Martins, I. Catarino et al., Narrow gas gap in cryogenic heat switch. Appl. Therm. Eng. 70(1), 115–121 (2014)

    Google Scholar 

  39. J. Franco, B. Galinhas, P.B. de Sousa et al., Building a thinner gap in a gas-gap heat switch. Phys. Proc. 67, 1117–1122 (2015)

    ADS  Google Scholar 

  40. B.B. Saha, S. Koyama, I.I. El-Sharkawy et al., Experiments for measuring adsorption characteristics of an activated carbon fiber/ethanol pair using a plate-fin heat exchanger. Hvac&R Res. 12(S2), 767–782 (2006)

    Google Scholar 

  41. L.W. Wang, S.J. Metcalf, R.E. Critoph et al., Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50(3), 977–986 (2012)

    Google Scholar 

  42. S.U. Zhan-Jun, N.T. Pan, W. Zhao et al., Preparation and properties of activated carbons with high thermal conductivity. Chem. Eng. 35(1), 8–9 (2012)

    ADS  Google Scholar 

  43. A.A. Askalany, S.K. Henninger, M. Ghazy et al., Effect of improving thermal conductivity of the adsorbent on performance of adsorption cooling system. Appl. Therm. Eng. 110, 695–702 (2017)

    Google Scholar 

  44. H. Li, M. Eddaoudi, M. O’Keeffe et al., Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 402(6759), 276 (1999)

    ADS  Google Scholar 

  45. A.P. Cote, A.I. Benin, N.W. Ockwig et al., Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)

    ADS  Google Scholar 

  46. H. Li, K. Wang, Y. Sun et al., Recent advances in gas storage and separation using metal–organic frameworks. Mater. Today 21(2), 108–121 (2018)

    Google Scholar 

  47. M.X. Wu, Y.W. Yang, Applications of covalent organic frameworks (COFs): from gas storage and separation to drug delivery. Chin. Chem. Lett. 28(6), 1135–1143 (2017)

    Google Scholar 

  48. V. Kotsubo, R. Radebaugh, P. Hendershott et al., Compact 2.2 K cooling system for superconducting nanowire single photon detectors. IEEE Trans. Appl. Supercond. 27(4), 1–5 (2017)

    Google Scholar 

  49. M. Yuexue, Q. Jia, W. Juan et al., A Closed Loop 2.65 K Hybrid JT Cooler for Future Space Application (Science China Technological Sciences, New York, 2019)

    Google Scholar 

  50. K. Kanao, S. Yoshida, M. Miyaoka et al., Cryogen free cooling of ASTRO-H SXS Helium Dewar from 300 K to 4 K. Cryogenics 88, 143–146 (2017)

    ADS  Google Scholar 

  51. X.Q. Zhi, L. Han, M. Dietrich et al., A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid. Cryogenics 58, 93–96 (2013)

    ADS  Google Scholar 

  52. J. Quan, Investigation on influence of non-ideal gas thermodynamic process on high frequency multi-stage pulse tube cryocooler working at liquid helium temperature. Doctoral thesis (Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 2015)

  53. C. Liubiao, W. Xianlin, L. Xuming et al., Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. Int. J. Refrig. 88, 204–210 (2018)

    Google Scholar 

  54. L. Chen, X. Wu, J. Wang et al., Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4. Cryogenics 94, 103–109 (2018)

    ADS  Google Scholar 

  55. C. Pan, J. Wang, K. Luo et al., Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4 K. Cryogenics 98, 71–79 (2019)

    ADS  Google Scholar 

  56. J. Wang, C. Pan, T. Zhang et al., First Stirling-type cryocooler reaching lambda point of 4He (2.17 K) and its prospect in Chinese HUBS satellite project. Sci. Bull. 64(4), 219–221 (2019)

    Google Scholar 

  57. X. Wu, L. Chen, X. Liu et al., An 80 mW/8 K high-frequency pulse tube refrigerator driven by only one linear compressor. Cryogenics 101, 7–11 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 51706233, U1831203, 51427806), Strategic Pilot Projects in Space Science of China (No. XDA15010400), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (No. QYZDY-SSW-JSC028) and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2019030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liubiao Chen or Yuan Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Wang, J., Chen, L. et al. Progress and Challenges of Sub-Kelvin Sorption Cooler and Its Prospects for Space Application. J Low Temp Phys 199, 1363–1381 (2020). https://doi.org/10.1007/s10909-020-02442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02442-1

Keywords

Navigation