Skip to main content

Advertisement

Log in

Major applications of heat pipe and its advances coupled with sorption system: a review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

Heat pipe utilizes continuous phase change process within a small temperature drop to achieve high thermal conductivity. For decades, heat pipes coupled with novel emerging technologies and methods (using nanofluids and self-rewetting fluids) have been highly appreciated, along with which a number of advances have taken place. In addition to some typical applications of thermal control and heat recovery, the heat pipe technology combined with the sorption technology could efficiently improve the heat and mass transfer performance of sorption systems for heating, cooling and cogeneration. However, almost all existing studies on this combination or integration have not concentrated on the principle of the sorption technology with acting as the heat pipe technology for continuous heat transfer. This paper presents an overview of the emerging working fluids, the major applications of heat pipe, and the advances in heat pipe type sorption system. Besides, the ongoing and perspectives of the solid sorption heat pipe are presented, expecting to serve as useful guides for further investigations and new research potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gaugler R S. Heat transfer device. US Patent, 2350348, 1944

    Google Scholar 

  2. Grover G M, Cotter T P, Ericson G F. Structures of very high thermal conductance. Journal of Applied Physics, 1964, 35: 1190–1191

    Article  Google Scholar 

  3. Reay D A, Kew P A, McGlen R J. Heat Pipes: Theory, Design and Applications. 6th ed. Whitley Bay: Elsevier, 2013

    Google Scholar 

  4. Vasiliev L L, Kakac S. Heat Pipes and Solid Sorption Transformations: Fundamentals and Practical Applications. Florida: Taylor & Francis Group, 2013

    Book  Google Scholar 

  5. Faghri A. Heat pipes: review, opportunities and challenges. Frontiers in Heat Pipes, 2014, 5(1): 1–48

    Article  Google Scholar 

  6. Faghri A, Chen M M, Morgan M. Heat transfer characteristics in two-phase closed conventional and concentric annular thermosyphons. Journal of Heat Transfer, 1989, 111(3): 611–618

    Article  Google Scholar 

  7. El-Genk M S, Saber H H. Flooding limit in closed, two-phase flow thermosyphons. International Journal of Heat and Mass Transfer, 1997, 40(9): 2147–2164

    Article  Google Scholar 

  8. Nguyen-Chi H, Groll M. Entrainment or flooding limit in a closed two-phase thermosyphon. Journal of Heat Recovery Systems, 1981, 1(4): 275–286

    Article  Google Scholar 

  9. Shatto D P, Besly J A, Peterson G P. Visualization study of flooding and entrainment in a closed two-phase thermosyphon. Journal of Thermophysics and Heat Transfer, 1997, 11(4): 579–581

    Article  Google Scholar 

  10. Meunier F. Solid sorption heat powered cycles for cooling and heat pumping applications. Applied Thermal Engineering, 1998, 18(9–10): 715–729

    Article  Google Scholar 

  11. Wang L W, Wang R Z, Oliveira R G. A review on adsorption working pairs for refrigeration. Renewable & Sustainable Energy Reviews, 2009, 13(3): 518–534

    Article  Google Scholar 

  12. Yan T, Wang R Z, Li T X, Wang L W, Fred I T. A review of promising candidate reactions for chemical heat storage. Renewable & Sustainable Energy Reviews, 2015, 43: 13–31

    Article  Google Scholar 

  13. Wang R Z, Wang L W, Wu J Y. Adsorption Refrigeration Theory and Applications. Beijing: Science Press, 2007

    Google Scholar 

  14. Critoph R E. The use of thermosyphon heat pipes to improve the performance of a carbon-ammonia adsorption refrigerator. In: IV Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, 2000

    Google Scholar 

  15. Wang R Z. Efficient adsorption refrigerators integrated with heat pipes. Applied Thermal Engineering, 2008, 28(4): 317–326

    Article  Google Scholar 

  16. Wang D C, Xia Z Z, Wu J Y, Wang R Z, Zhai H, Dou W D. Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction. International Journal of Refrigeration, 2005, 28(7): 1073–1083

    Article  Google Scholar 

  17. Yang G Z, Xia Z Z, Wang R Z, Keletigui D, Wang D C, Dong Z H, Yang X. Research on a compact adsorption room air conditioner. Energy Conversion and Management, 2006, 47(15–16): 2167–2177

    Article  Google Scholar 

  18. Wang L W, Wang R Z, Lu Z S, Xu Y X, Wu J Y. Split heat pipe type compound adsorption ice making test unit for fishing boats. International Journal of Refrigeration, 2006, 29(3): 456–468

    Article  Google Scholar 

  19. Li T X, Wang R Z, Wang L W, Lu Z S, Chen C J. Performance study of a high efficient multifunction heat pipe type adsorption ice making system with novel mass and heat recovery processes. International Journal of Thermal Sciences, 2007, 46(12): 1267–1274

    Article  Google Scholar 

  20. Yu Y, Wang L W, Jiang L, Gao P, Wang R Z. The feasibility of solid sorption heat pipe for heat transfer. Energy Conversion and Management, 2017, 138: 148–155

    Article  Google Scholar 

  21. Yu Y, Wang L W, An G L. Experimental study on sorption and heat transfer performance of NaBr-NH3 for solid sorption heat pipe. International Journal of Heat and Mass Transfer, 2018, 117: 125–131

    Article  Google Scholar 

  22. Jouhara H, Chauhan A, Nannou T, Almahmoud S, Delpech B, Wrobel L C. Heat pipe based systems—advances and applications. Energy, 2017, 128: 729–754

    Article  Google Scholar 

  23. Gupta N K, Tiwari A K, Ghosh S K. Heat transfer mechanisms in heat pipes using nanofluids—a review. Experimental Thermal and Fluid Science, 2018, 90: 84–100

    Article  Google Scholar 

  24. Chien H T, Tsai C I, Chen P H, Chen P Y. Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid. In: Proceedings of 5th International Conference on Electronic Packaging Technology, Shanghai, China, 2003

    Google Scholar 

  25. Putra N, Septiadi W N, Rahman H, Irwansyah R. Thermal performance of screen mesh wick heat pipes with nanofluids. Experimental Thermal and Fluid Science, 2012, 40: 10–17

    Article  Google Scholar 

  26. Putra N, Saleh R, Septiadi W N, Okta A, Hamid Z. Thermal performance of biomaterial wick loop heat pipes with water-base Al2O3 nanofluids. International Journal of Thermal Sciences, 2014, 76: 128–136

    Article  Google Scholar 

  27. Mashaei P R, Shahryari M, Fazeli H, Hosseinalipour S M. Numerical simulation of nanofluid application in a horizontal mesh heat pipe with multiple heat sources: a smart fluid for high efficiency thermal system. Applied Thermal Engineering, 2016, 100: 1016–1030

    Article  Google Scholar 

  28. Mashaei P R, Shahryari M, Madani S. Numerical hydrothermal analysis of water-Al2O3 nanofluid forced convection in a narrow annulus filled by porous medium considering variable properties. Journal of Thermal Analysis and Calorimetry, 2016, 126(2): 891–904

    Article  Google Scholar 

  29. Mashaei P R, Shahryari M, Madani S. Analytical study of multiple evaporator heat pipe with nanofluid: a smart material for satellite equipment cooling application. Aerospace Science and Technology, 2016, 59: 112–121

    Article  Google Scholar 

  30. Ramachandran R, Ganesan K, Rajkumar M R, Asirvatham L G, Wongwises S. Comparative study of the effect of hybrid nanoparticle on the thermal performance of cylindrical screen mesh heat pipe. International Communications in Heat and Mass Transfer, 2016, 76: 294–300

    Article  Google Scholar 

  31. Sözen A, Menlik T, Gürü M, Boran K, Kılıç F, Aktaş M, Çakır M T. A comparative investigation on the effect of fly-ash and alumina nanofluids on the thermal performance of two-phase closed thermosyphon heat pipes. Applied Thermal Engineering, 2016, 96: 330–337

    Article  Google Scholar 

  32. Ghanbarpour M, Khodabandeh R, Vafai K. An investigation of thermal performance improvement of a cylindrical heat pipe using Al2O3 nanofluid. Heat and Mass Transfer, 2017, 53(3): 973–983

    Article  Google Scholar 

  33. Poplaski L M, Benn S P, Faghri A. Thermal performance of heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 2017, 107: 358–371

    Article  Google Scholar 

  34. Senthil R, Ratchagaraja D, Silambarasan R, Manikandan R. Contemplation of thermal characteristics by filling ratio of Al2O3 nanofluid in wire mesh heat pipe. Alexandria Engineering Journal, 2016, 55(2): 1063–1068

    Article  Google Scholar 

  35. Kumaresan G, Venkatachalapathy S, Asirvatham L G, Wongwises S. Comparative study on heat transfer characteristics of sintered and mesh wick heat pipes using CuO nanofluids. International Communications in Heat and Mass Transfer, 2014, 57: 208–215

    Article  Google Scholar 

  36. Venkatachalapathy S, Kumaresan G, Suresh S. Performance analysis of cylindrical heat pipe using nanofluids—an experimental study. International Journal of Multiphase Flow, 2015, 72: 188–197

    Article  Google Scholar 

  37. Kumaresan G, Venkatachalapathy S, Asirvatham L G. Experimental investigation on enhancement in thermal characteristics of sintered wick heat pipe using CuO nanofluids. International Journal of Heat and Mass Transfer, 2014, 72: 507–516

    Article  Google Scholar 

  38. Alizad K, Vafai K, Shafahi M. Thermal performance and operational attributes of the startup characteristics of flat-shaped heat pipes using nanofluids. International Journal of Heat and Mass Transfer, 2012, 55(1–3): 140–155

    Article  MATH  Google Scholar 

  39. Brahim T, Jemni A. Numerical case study of packed sphere wicked heat pipe using Al2O3 and CuO based water nanofluid. Case Studies in Thermal Engineering, 2016, 8: 311–321

    Article  Google Scholar 

  40. Kole M, Dey T K. Thermal performance of screen mesh wick heat pipes using water-based copper nanofluids. Applied Thermal Engineering, 2013, 50(1): 763–770

    Article  Google Scholar 

  41. Senthilkumar R, Vaidyanathan S, Sivaraman B. Effect of inclination angle in heat pipe performance using copper nanofluid. Procedia Engineering, 2012, 38: 3715–3721

    Article  Google Scholar 

  42. Klinbun J, Terdtoon P. Experimental study of copper nano-fluid on thermosyphons thermal performance. Engineering Journal (New York), 2017, 21(1): 255–264

    Google Scholar 

  43. Riehl R R, Santos N. Water-copper nanofluid application in an open loop pulsating heat pipe. Applied Thermal Engineering, 2012, 42: 6–10

    Article  Google Scholar 

  44. Karthikeyan V K, Ramachandran K, Pillai B C, Brusly Solomon A. Effect of nanofluids on thermal performance of closed loop pulsating heat pipe. Experimental Thermal and Fluid Science, 2014, 54: 171–178

    Article  Google Scholar 

  45. Solomon A B, Ramachandran K, Asirvatham L G, Pillai B C. Numerical analysis of a screen mesh wick heat pipe with Cu/water nanofluid. International Journal of Heat and Mass Transfer, 2014, 75: 523–533

    Article  Google Scholar 

  46. Wan Z, Deng J, Li B, Xu Y, Wang X, Tang Y. Thermal performance of a miniature loop heat pipe using water-copper nanofluid. Applied Thermal Engineering, 2015, 78: 712–719

    Article  Google Scholar 

  47. Abe Y, Iwasaki A, Tanaka K. Microgravity experiments on phase change of self-rewetting fluids. Annals of the New York Academy of Sciences, 2004, 1027(1): 269–285

    Article  Google Scholar 

  48. Hu Y, Huang K, Huang J. A review of boiling heat transfer and heat pipes behaviour with self-rewetting fluids. International Journal of Heat and Mass Transfer, 2018, 121: 107–118

    Article  Google Scholar 

  49. Wu S C. Study of self-rewetting fluid applied to loop heat pipe. International Journal of Thermal Sciences, 2015, 98: 374–380

    Article  Google Scholar 

  50. Senthilkumar R, Vaidyanathan S, Sivaraman B. Comparative study on heat pipe performance using aqueous solutions of alcohols. Heat and Mass Transfer, 2012, 48(12): 2033–2040

    Article  Google Scholar 

  51. Peyghambarzadeh S M, Hallaji H, Bohloul M R, Aslanzadeh N. Heat transfer and Marangoni flow in a circular heat pipe using selfrewetting fluids. Experimental Heat Transfer, 2017, 30(3): 218–234

    Article  Google Scholar 

  52. Xin G M, Qin Q Y, Zhang L S, Ji W X. Thermal characteristics of gravity heat pipes with self-rewetting fluid at small inclination angles. Journal of Engineering Thermophysics, 2013, 36(6): 1282–1285

    Google Scholar 

  53. Su X J, Zhang M, Han W, Guo X. Experimental study on the heat transfer performance of an oscillating heat pipe with self-rewetting nanofluid. International Journal of Heat and Mass Transfer, 2016, 100: 378–385

    Article  Google Scholar 

  54. Tian F Z, Xin G M, Hai Q, Cheng L. An investigation of heat transfer characteristic of cross internal helical microfin gravity heat pipe with self-rewetting fluid. Advanced Materials Research, 2013, 765–767: 189–192

    Article  Google Scholar 

  55. Zhao J, Qu J, Rao Z. Experiment investigation on thermal performance of a large-scale oscillating heat pipe with selfrewetting fluid used for thermal energy storage. International Journal of Heat and Mass Transfer, 2017, 108: 760–769

    Article  Google Scholar 

  56. Sohel Murshed S M, Nieto De Castro C A. A critical review of traditional and emerging techniques and fluids for electronics cooling. Renewable & Sustainable Energy Reviews, 2017, 78: 821–833

    Article  Google Scholar 

  57. Faghri A. Review and advances in heat pipe science and technology. Journal of Heat Transfer, 2012, 134(12): 123001

    Article  Google Scholar 

  58. Chen X, Ye H, Fan X, Ren T, Zhang G. A review of small heat pipes for electronics. Applied Thermal Engineering, 2016, 96: 1–17

    Article  Google Scholar 

  59. Maydanik Y F, Chernysheva M A, Pastukhov V G. Review: loop heat pipes with flat evaporators. Applied Thermal Engineering, 2014, 67(1–2): 294–307

    Article  Google Scholar 

  60. Siedel B, Sartre V, Lefèvre F. Literature review: steady-state modelling of loop heat pipes. Applied Thermal Engineering, 2015, 75: 709–723

    Article  Google Scholar 

  61. Becker S, Vershinin S, Sartre V, Laurien E, Bonjour J, Maydanik Y F. Steady state operation of a copper-water LHP with a flat-oval evaporator. Applied Thermal Engineering, 2011, 31(5): 686–695

    Article  Google Scholar 

  62. Maydanik Y F, Vershinin S. Development and investigation of copper-water loop heat pipes with high operating characteristics. Heat Pipe Science and Technology, An International Journal, 2010, 1(2): 151–162

    Article  Google Scholar 

  63. Pastukhov V G, Maydanik Y F. Low-noise cooling system for PC on the base of loop heat pipe. Applied Thermal Engineering, 2007, 27: 894–901

    Article  Google Scholar 

  64. Su Q, Chang S, Zhao Y, Zheng H, Dang C. A review of loop heat pipes for aircraft anti-icing applications. Applied Thermal Engineering, 2018, 130: 528–540

    Article  Google Scholar 

  65. Reyes M, Alonso D, Arias J, Velazquez A. Experimental and theoretical study of a vapour chamber based heat spreader for avionics applications. Applied Thermal Engineering, 2012, 37: 51–59

    Article  Google Scholar 

  66. Yang K S, Yang T Y, Tu C W, Yeh C T, Lee M T. A novel flat polymer heat pipe with thermal via for cooling electronic devices. Energy Conversion and Management, 2015, 100: 37–44

    Article  Google Scholar 

  67. Qu J, Wu H Y, Wang Q. Experimental investigation of siliconbased micro-pulsating heat pipe for cooling electronics. Nanoscale and Microscale Thermophysical Engineering, 2012, 16(1): 37–49

    Article  Google Scholar 

  68. Zhu R, Chen J, Long Y, Hu X. Oscillation heat transfer dynamic model for the new type oscillation looped heat pipe with double liquid slugs. Journal of Central South University, 2012, 19(11): 3194–3201

    Article  Google Scholar 

  69. Zhao X, Deng Y, Zhu H. Pressure distribution and flow characteristics of closed oscillating heat pipe during starting process at different vacuum degrees. Applied Thermal Engineering, 2016, 93: 166–173

    Article  Google Scholar 

  70. Ebrahimi K, Jones G F, Fleischer A S. A review of data center cooling technology, operating conditions and the corresponding low-grade waste heat recovery opportunities. Renewable & Sustainable Energy Reviews, 2014, 31: 622–638

    Article  Google Scholar 

  71. Sevencan S, Lindbergh G, Lagergren C, Alvfors P. Economic feasibility study of a fuel cell-based combined cooling, heating and power system for a data centre. Energy and Building, 2016, 111: 218–223

    Article  Google Scholar 

  72. Whitney J, Delforge P. Data Center Efficiency Assessment. New York: Natural Resources Defense Council, 2014

    Google Scholar 

  73. Daraghmeh H M, Wang C. A review of current status of free cooling in datacenters. Applied Thermal Engineering, 2017, 114: 1224–1239

    Article  Google Scholar 

  74. Zhou F, Ma G, Wang S. Entropy generation rate analysis of a thermosyphon heat exchanger for cooling a telecommunication base station. International Journal of Exergy, 2017, 22(2): 139–157

    Article  Google Scholar 

  75. Zhou F, Li C, Zhu W, Zhou J, Ma G, Liu Z. Energy-saving analysis of a case data center with a pump-driven loop heat pipe system in different climate regions in China. Energy and Building, 2018, 169: 295–304

    Article  Google Scholar 

  76. Zhang L Y, Liu Y Y, Guo X, Meng X Z, Jin L W, Zhang Q L, Hu W J. Experimental investigation and economic analysis of gravity heat pipe exchanger applied in communication base station. Applied Energy, 2017, 194: 499–507

    Article  Google Scholar 

  77. Zhang L Y, Liu Y Y, Jin L W, Liu X, Meng X, Zhang Q. Economic analysis of gravity heat pipe exchanger applied in communication base station. Energy Procedia, 2016, 88: 518–525

    Article  Google Scholar 

  78. Tong Z, Ding T, Li Z, Liu X H. An experimental investigation of an R744 two-phase thermosyphon loop used to cool a data center. Applied Thermal Engineering, 2015, 90: 362–365

    Article  Google Scholar 

  79. Zhang H, Shi Z, Liu K, Shao S, Jin T, Tian C. Experimental and numerical investigation on a CO2 loop thermosyphon for free cooling of data centers. Applied Thermal Engineering, 2017, 111: 1083–1090

    Article  Google Scholar 

  80. Zhang H, Shao S, Tian C, Zhang K. A review on thermosyphon and its integrated system with vapor compression for free cooling of data centers. Renewable & Sustainable Energy Reviews, 2018, 81(1): 789–798

    Article  Google Scholar 

  81. Zhang H, Shao S, Xu H, Zou H, Tian C. Integrated system of mechanical refrigeration and thermosyphon for free cooling of data centers. Applied Thermal Engineering, 2015, 75: 185–192

    Article  Google Scholar 

  82. Zhang H, Shao S, Xu H, Zou H, Tang M, Tian C. Numerical investigation on fin tube three-fluid heat exchanger for hybrid source HVAC & R systems. Applied Thermal Engineering, 2016, 95: 157–164

    Article  Google Scholar 

  83. Blet N, Lips S, Sartre V. Heat pipes for temperature homogenization: a literature review. Applied Thermal Engineering, 2017, 118: 490–509

    Article  Google Scholar 

  84. Chaudhry H N, Hughes B R, Ghani S A. A review of heat pipe systems for heat recovery and renewable energy applications. Renewable & Sustainable Energy Reviews, 2012, 16(4): 2249–2259

    Article  Google Scholar 

  85. Liu Y, Zhang H. Experimental studies on the isothermal and heat transfer performance of trough solar power collectors. Advanced Materials Research, 2014, 1044–1045: 320–326

    Article  Google Scholar 

  86. Rittidech S, Wannapakne S. Experimental study of the performance of a solar collector by closed-end oscillating heat pipe (CEOHP). Applied Thermal Engineering, 2007, 27(11–12): 1978–1985

    Article  Google Scholar 

  87. Kargarsharifabad H, Mamouri S J, Shafii M B, Rahni M T. Experimental investigation of the effect of using closed-loop pulsating heat pipe on the performance of a flat plate solar collector. Journal of Renewable and Sustainable Energy, 2013, 5(1): 013106

    Article  Google Scholar 

  88. He W, Zhou J, Hou J, Chen C, Ji J. Theoretical and experimental investigation of a thermoelectric cooling and heating system driven by solar. Applied Energy, 2013, 107: 89–97

    Article  Google Scholar 

  89. Ong K S. Review of solar, heat pipe and thermoelectric hybrid systems for power generation and heating. International Journal of Low Carbon Technologies, 2016, 11(4): 460–465

    Google Scholar 

  90. WBCSD. Energy Efficiency in Buildings Facts & Trends. World Business Council for Sustainable Development’s Report. Switzerland: Atar Roto Presse SA, 2008

    Google Scholar 

  91. O’Connor D, Calautit J K S, Hughes B R. A review of heat recovery technology for passive ventilation applications. Renewable & Sustainable Energy Reviews, 2016, 54: 1481–1493

    Article  Google Scholar 

  92. Jafari D, Franco A, Filippeschi S, Di Marco P. Two-phase closed thermosyphons: a review of studies and solar applications. Renewable & Sustainable Energy Reviews, 2016, 53: 575–593

    Article  Google Scholar 

  93. Firouzfar E, Soltanieh M, Noie S H, Saidi S H. Energy saving in HVAC systems using nanofluid. Applied Thermal Engineering, 2011, 31(8–9): 1543–1545

    Article  Google Scholar 

  94. Byrne P, Miriel J, Lénat Y. Experimental study of an air-source heat pump for simultaneous heating and cooling–part 2: dynamic behavior and two-phase thermosiphon defrosting technique. Applied Thermal Engineering, 2011, 88: 3072–3078

    Google Scholar 

  95. Jouhara H, Merchant H. Experimental investigation of a thermosyphon based heat exchanger used in energy efficient air handling units. Energy, 2012, 39(1): 82–89

    Article  Google Scholar 

  96. Danielewicz J, Sayegh M A, Sniechowska B, Szulgowska-Zgrzywa M, Jouhara H. Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers. Energy, 2014, 77: 82–87

    Article  Google Scholar 

  97. Meena P, Tammasaeng P, Kanphirom J, Ponkho A, Setwong S. Enhancement of the performance heat transfer of a thermosyphon with fin and without fin heat exchangers using Cu-nanofluid as working fluids. Journal of Engineering Thermophysics, 2014, 23(4): 331–340

    Article  Google Scholar 

  98. Vasiliev L L, Vasiliev L Jr. Sorption heat pipe—a new thermal control device for space and ground application. International Journal of Heat and Mass Transfer, 2005, 48(12): 2464–2472

    Article  Google Scholar 

  99. Vasiliev L L, Vasiliev L Jr. The sorption heat pipe—a new device for thermal control and active cooling. Superlattices and Microstructures, 2004, 35(3–6): 485–495

    Article  Google Scholar 

  100. Vasiliev L L. Sorption refrigerators with heat pipe thermal control. In: Cryogenics and Refrigeration–Proceedings of ICCR. Beijing: Science Press, 2003, 405–415

    Google Scholar 

  101. Vasiliev L L. Solar sorption refrigerator. In: Proceeding of 5th Minsk International Seminar “Heat Pipes, Heat Pumps, Refrigerators”, Minsk, Belarus, 2003

    Google Scholar 

  102. Vasiliev L L, Mishkinis D A, Antukh A A, Vasiliev L L Jr. Solar–gas solid sorption heat pump. Applied Thermal Engineering, 2001, 21(5): 573–583

    Article  Google Scholar 

  103. Vasiliev L L, Kanonchik L E, Antuh A A, Kulakov A G, Kulikovsky V K. Waste heat driven solid sorption coolers containing heat pipes for thermo control. Adsorption, 1995, 1(4): 303–312

    Article  Google Scholar 

  104. Vasiliev L L. Electronic cooling system with a loop heat pipe and solid sorption cooler. In: 11th International Heat Pipe Conference, Musachinoshi, Tokyo, Japan, 1999

    Google Scholar 

  105. Vasiliev L L. Heat pipes and solid sorption machines. Heat Transfer Research, 2004, 35(5–6): 393–405

    Article  Google Scholar 

  106. Wang L W, Wang R Z, Wu J Y, Xia Z Z, Wang K. A new type adsorber for adsorption ice maker on fishing boats. Energy Conversion and Management, 2005, 46(13–14): 2301–2316

    Article  Google Scholar 

  107. Wang K, Wu J Y, Xia Z Z, Li S L, Wang R Z. Design and performance prediction of a novel double heat pipes type adsorption chiller for fishing boats. Renewable Energy, 2008, 33(4): 780–790

    Article  Google Scholar 

  108. Lu Z S, Wang R Z, Li T X, Wang L W, Chen C J. Experimental investigation of a novel multifunction heat pipe solid sorption icemaker for fishing boats using CaCl2/activated carbon compound–ammonia. International Journal of Refrigeration, 2007, 30(1): 76–85

    Article  Google Scholar 

  109. E J, Zhao X, Liu H, Chen J, Zuo W, Peng Q. Field synergy analysis for enhancing heat transfer capability of a novel narrow-tube closed oscillating heat pipe. Applied Energy, 2016, 175: 218–228

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51576120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., An, G. & Wang, L. Major applications of heat pipe and its advances coupled with sorption system: a review. Front. Energy 13, 172–184 (2019). https://doi.org/10.1007/s11708-019-0610-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-019-0610-6

Keywords

Navigation