Skip to main content
Log in

Magnetic and Magneto-Transport Properties of the Sb Doping Mn Site in La0.67Ba0.33Mn1−xSbxO3 (0.03 and 0.07) Manganites

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the effect of Sb5+ doping at Mn-site in La0.67Ba0.33Mn1−xSbxO3 (LBMO-Sbx) on the magnetic and magneto-electrical properties. The variation of the magnetization M versus temperature T, under an applied magnetic field of 0.05 T, reveals a ferromagnetic–paramagnetic transition for all samples. The resistivity and magneto-transport measurements are performed using standard four-probe assembly with and without magnetic fields. The temperature dependence of electrical resistivity shows that all samples undergo a sharp metal–semiconductor (M–SC) transition at a temperature (TM–SC), accompanying the ferromagnetic–paramagnetic transition. The peak resistivity ρmax is noted at the metal–semiconductor transition temperature (TM–SC) and lowering in TM–SC is observed for higher concentrations of Sb5+. The resistivity data have been analyzed in two parts. Firstly, in the metallic region below TM–SC the resistivity data is fitted with three degree polynomial. Secondly, in the semiconducting region above TM–SC data have been fitted with Small Polaron Hopping models. Above all, the magnetoresistance study showed a peak which has a high value around the M–SC transition temperature. The dependence of resistivity on the temperature and magnetic field data is used to deduce the magnetic entropy change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Chahara, T. Ohno, M. Kasai, Y. Kosono, Appl. Phys. Lett. 63, 1990–1992 (1993)

    Article  ADS  Google Scholar 

  2. R. von Helmolt, J. Weckerg, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331–2333 (1993)

    Article  ADS  Google Scholar 

  3. S. Jin, T.H. Tiefel, M. McCromack, R.A. Fastnatch, R. Ramesh, L.H. Chen, Science 264, 413–415 (1994)

    Article  ADS  Google Scholar 

  4. L.W. Martin, Y.H. Chu, R. Ramesh, Mater. Sci. Eng. R 68, 89–133 (2010)

    Article  Google Scholar 

  5. A. Bhattacharya, S.J. May, Annu. Rev. Mater. Res. 44, 65–90 (2014)

    Article  ADS  Google Scholar 

  6. H. Qin, J. Hu, J. Chen, H. Niu, L. Zhu, J. Magn. Magn. Mater. 263, 249–252 (2003)

    Article  ADS  Google Scholar 

  7. I. Dhiman, A. Das, A.K. Nigam, R.K. Kremer, J. Magn. Magn. Mater. 334, 21–30 (2013)

    Article  ADS  Google Scholar 

  8. J. Kondo, J. Solid State Phys. 23, 183 (1968)

    Article  Google Scholar 

  9. M. Khlifi, M. Bejar, E. Dhahri, P. Lachkar, E.K. Hlil, J. Appl. Phys. 111, 103909 (2012)

    Article  ADS  Google Scholar 

  10. Y. Murano, M. Matsukawa, S. Ohuchi, S. Kobayashi, S. Nimori, R. Suryanarayanan, K. Koyama, N. Kobayashi, Phys. Rev. B 83, 1–13 (2011)

    Article  Google Scholar 

  11. V. Sen, N. Panwar, G.L. Bhalla, S.K. Agarwal, J. Phys. Chem. Solid. 68, 1685–1691 (2007)

    Article  ADS  Google Scholar 

  12. B.R. Kataria, P. Solanki, D.D. Pandya, P.S. Solanki, N.A. Shah, Phys. B Condens. Matter 541, 43–49 (2018)

    Article  ADS  Google Scholar 

  13. I. Betancourt, L.L. Maldonado, J.T.E. Galindo, J. Magn. Magn. Mater. 401, 812 (2016)

    Article  ADS  Google Scholar 

  14. J. Kondo, Prog. Theor. Phys. 32, 37 (1964)

    Article  ADS  Google Scholar 

  15. M. Ziese, Phys. Rev. B 68, 132411 (2003)

    Article  ADS  Google Scholar 

  16. D. Kumar, J. Sankar, J. Narayan, R.K. Singh, A.K. Majumdar, Phys. Rev. B 65, 094407 (2002)

    Article  ADS  Google Scholar 

  17. A. Ben Hassine, A. Dhahri, L. Bouazizi, M. Oumezzine, E.K. Hlil, Solid State Commun. 233, 6–10 (2016)

    Article  ADS  Google Scholar 

  18. D.K. Pandey, A. Modi, P. Pandey, N.K. Gaur, J. Mater. Sci. Mater. Electron. 28, 17245–17253 (2017)

    Article  Google Scholar 

  19. K.S. Rao, B. Tilak, KChV Rajulu, A. Swathi, H. Workineh, J. Alloys Compd. 509, 7121–7129 (2011)

    Article  Google Scholar 

  20. C. Vàzquez-Vàzquez, M.C. Blanco, M.A. Lopez-Quintela, R.D. Sànchez, J. Rivas, S.B. Oseroff, J. Mater. Chem. 8, 991–1000 (1998)

    Article  Google Scholar 

  21. D.C. Linh, N.T. Ha, N.H. Duc, L.H.G. Nam, L.V. Bau, N.M. An, S.C. Yu, T.D. Thanh, Physica B 532, 155 (2018)

    Article  ADS  Google Scholar 

  22. N. Jiang, X. Zhang, Y. Yu, J. Phys. Condens. Matter 25, 475901 (2013)

    Article  ADS  Google Scholar 

  23. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, J.J. Du, J. Appl. Phys. 90, 2943 (2001)

    Article  ADS  Google Scholar 

  24. Y.H. Xiong, W. Xu, Y.T. Mai, H.L. Pi, C.L. Sun, X.C. Bao, W.H. Huang, C.S. Xiong, J. Magn. Magn. Mater. 320, 257–262 (2008)

    Article  ADS  Google Scholar 

  25. P.S. Solanki, R.R. Doshi, A. Ravalia, M.J. Keshvani, S. Pandya, V. Ganesan, N.A. Shah, D.G. Kuberkar, Physica B 465, 71–80 (2015)

    Article  ADS  Google Scholar 

  26. E. Vaghela, M.J. Keshvani, K. Gadani, Z. Joshi, H. Boricha, K. Asokan, D. Venkateshwarlu, V. Ganesan, N.A. Shah, P.S. Solanki, Phys. Chem. Phys. 19, 5163–5176 (2017)

    Article  Google Scholar 

  27. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, J. Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  28. D.C. Worledge, G.J. Snyder, M.R. Beasley, T.H. Geballe, J. Appl. Phys. 80, 5158 (1996)

    Article  ADS  Google Scholar 

  29. M. Viret, L. Ranno, J.M.D. Coey, J. Phys. Rev. B 55, 8067 (1997)

    Article  ADS  Google Scholar 

  30. G.J. Snyder, R. Hiskers, S. DiCarolis, M.R. Beasley, T.H. Geballe, J. Phys. Rev. B53, 14434 (1996)

    Article  ADS  Google Scholar 

  31. G. Venkataiah, P. Venugopal Reddy, J. Solid State Commun. 136, 114 (2005)

    Article  ADS  Google Scholar 

  32. K. Kubo, N. Ohata, A quantum theory of double exchange. J. Phys. Soc. Jpn. 33, 21 (1992)

    Article  ADS  Google Scholar 

  33. M. Jaime, M.B. Salamon, M. Rubinstein, R.E. Treece, J.S. Horwitz, D.B. Chrisey, Phys. Rev. B 54, 11914 (1996)

    Article  ADS  Google Scholar 

  34. M. Khlifi, E. Dhahri, E.K. Hlil, J. Alloys Compd. 587, 771–777 (2014)

    Article  Google Scholar 

  35. Y. Sun, W. Tong, X. Xu, Y. Zhang, Appl. Phys. 78, 5 (2001)

    Google Scholar 

  36. F. Elleuch, M. Triki, M. Bekri, E. Dhahri, E.K. Hlil, J. Alloys Compd. 620, 249–255 (2015)

    Article  Google Scholar 

  37. T.G. Perring, G. Aeppli, T. Kimura, Y. Tokura, M.A. Adams, Phys. Rev. B 58, R14693–R14696 (1998)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessalem Dhahri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guedri, A., Alomari, A., Hcini, S. et al. Magnetic and Magneto-Transport Properties of the Sb Doping Mn Site in La0.67Ba0.33Mn1−xSbxO3 (0.03 and 0.07) Manganites. J Low Temp Phys 197, 458–470 (2019). https://doi.org/10.1007/s10909-019-02237-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02237-z

Keywords

Navigation