Skip to main content
Log in

Variable excitation wavelength photoluminescence response and optical absorption in BiFeO3 nanostructures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper we present uniformly distributed ~100 nm BiFeO3 nanoparticles synthesized by conventional chemical co-precipitation method in order to scrutinize structural, optical, photoluminescence and dielectric properties. The Rietveld refinement of the X-ray diffraction pattern revealed that the sample is single phase in nature and crystallizes in rhombohedral structure with R3c space group. The average crystallite size and particle strain were estimated by using Debye–Scherer’s and Hall–Williamson method. The particle size of the BiFeO3 nanoparticles is ~100 nm with uniform size distribution predicted by the field-emission scanning electron micrographs. The effective band-gap of the nanostructures calculated as 2.74 eV along with additional defect levels determined by plotting Tauc relation. The Photoluminescence response of BiFeO3 nanoparticles is extensively observed across the UV–Visible spectrum by illuminating the sample with different excitation wavelengths from ~280 to ~360 nm. Photoluminescence also specifies the characteristic band-gap of crystalline BiFeO3 ~2.96 eV, along with some prominent energy levels near the conduction and valence band edge that may appear due to nano-structuring. The chemical bonds between the constituent elements of the specimen are traced with FTIR spectroscopy. The dielectric study identifies low frequency dispersive nature of the specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.S.V. Mocherla, C. Karthik, R. Ubic, M.S.R. Rao, Appl. Phys. Lett. 103, 022910 (2013)

    Article  Google Scholar 

  2. L. Fei, J. Yuan, Y. Hu, C. Wu, J. Wang, Y. Wang, Cryst. Growth Des. 11, 1049–1053 (2011)

    Article  Google Scholar 

  3. P.R. Vanga, R.V. Mangalaraja, M. Ashok, Mater. Res. Bull. 72, 299–305 (2015)

    Article  Google Scholar 

  4. P.S. Pizani, H.C. Basso, F. Lanciotti Jr., T.M. Boschi, F.M. Pontes, E. Longo, E.R. Leite, Appl. Phys. Lett. 81, 253 (2002)

    Article  Google Scholar 

  5. K.A. McDonnell, N. Wadnerkar, N.J. English, M. Rahman, D. Dowling, Chem. Phys. Lett. 572, 78–84 (2013)

    Article  Google Scholar 

  6. F. Gao, X. Chen, K. Yin, S. Dong, Z. Ren, F. Yuan, T. Yu, Z. Zou, J.M. Liu, Adv. Mater. 19, 2889–2892 (2007)

    Article  Google Scholar 

  7. A. Mukherjee, Sk..M. Hossain, M. Pal, S. Basu, Appl. Nanosci. 2, 305–310 (2012)

    Article  Google Scholar 

  8. K. Takahashi, N. Kida, M. Tonouchi, Phys. Rev. Lett. 96, 117402 (2006)

    Article  Google Scholar 

  9. S.XU X., T.V. Brinzari, S. Lee, Y.H. Chu, L.W. Martin, A. Kumar, S. McGill, R.C. Rai, R. Ramesh, V. Gopalan, S.W. Cheong, J.L. Musfeldt, Phys. Rev. B 79, 134425 (2009)

    Article  Google Scholar 

  10. R.V. Pisarev, A.S. Moskvin, A.M. Kalashnikova, Th.. Rasing, Phys. Rev. B 79, 235128 (2009)

    Article  Google Scholar 

  11. S.Y. Yang, L.W. Martin, S.J. Byrnes, T.E. Conry, S.R. Basu, D. Paran, L. Reichertz, L. Ihlefeld, C. Adamo, A. Melville, Y.H. Chu, C.H. Yang, J.L. Musfeldt, D.G. Schlom, J.W. Ager, R. Ramesh, Appl. Phys. Lett. 95, 062909 (2009)

    Article  Google Scholar 

  12. D. Sando, A. Barthelemy and M. Bibes, J. Phys. Condens. Matter 26, 473201 (2014)

    Article  Google Scholar 

  13. R. Moubah, G. Schmerber, O. Rousseau, D. Colson, M. Viret, Appl. Phys. Express 5, 035802 (2012)

    Article  Google Scholar 

  14. L.E. Brus, J. Chem. Phys. 79, 5566–5571 (1983)

    Article  Google Scholar 

  15. S. Dutta, A. Pandey, K. Jindal, O. P. Thakur, V. Gupta, R. Chatterjee, J. Appl. Phys. A 120 (2015), 53–58

    Article  Google Scholar 

  16. A. Anshul, A. Kumar, B.K. Gupta, R.K. Kotnala, J.F. Scott, R.S. Katiyar, Appl. Phys. Lett. 102, 222901 (2013)

    Article  Google Scholar 

  17. X.Y. Guan. Z.W. Qiao, D.Z. Yan, F.Y. Sun, J. Li, J. Mater. Sci. 26, 6807–6813 (2015)

    Google Scholar 

  18. J. Wu, Z. Fan, D. Xiao, J. Zhu, J. Wang, Prog. Mater. Sci. 84, 335–402 (2016)

    Article  Google Scholar 

  19. X. Zhang, Y.L. Chen, R.-S. Liu, D.P. Tsai, Rep. Prog. Phys. 76, 046401–046441 (2013)

    Article  Google Scholar 

  20. S.K. Apte, S.D. Naik, R.S. Sonawane, B.B. Kale, J. Am. Ceram. Soc. 90, 412–414 (2007)

    Article  Google Scholar 

  21. J. Chaktabartty, R. Nechache, S. Li, M. Nicklaus, A. Ruediger, F. Rosei, J. Am. Ceram. Soc. 97, 1837–1840 (2014)

    Article  Google Scholar 

  22. S.M. Selbach, M.A. Einarsurd, T. Tybell, T. Grande, J. Am. Ceram. Soc. 90, 3430–3434 (2007)

    Article  Google Scholar 

  23. M.Y. Shami, M.S. Awan, M.A. Rehman, J. Alloys Comp. 509, 10139–10144 (2011)

    Article  Google Scholar 

  24. K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011)

    Article  Google Scholar 

  25. S. Som, S.K. Sharma, J. Phys. D 45, 415102 (2012)

    Article  Google Scholar 

  26. X. Wang, S.Y. Wang, W.F. Liu, X.J. Xi, H. Zhang, F. Guo, X.L. Xu, M. Li, L. Liu, C. Zhang, X. Li, J.B. Yang, J. Nanopart. Res. 17, 209 (2015)

    Article  Google Scholar 

  27. V. Fruth, E. Tenea, M. Gartner, M. Anastasescu, D. Berger, R. Ramer, M. Zaharescu, J. Europe. Cera. Soc. 27 (2007), 937–940

    Article  Google Scholar 

  28. K. Prashanthi, M. Gupta, Y.Y. Tusi, T. Thundat, Appl. Phys. A 110, 903–907 (2013)

    Article  Google Scholar 

  29. S. R. Basu, L. W. Martin, Y. H. Chu, M. Gajek, R. Ramesh, R. C. Rai, X. Xu, J. L. Musfeldt, Appl. Phys. Lett. 92, 091905 (2008)

    Article  Google Scholar 

  30. S. Chauhan, M. Kumar, S. Chhoker, S.C. Katyal, H. Singh, M. Jewariya, K.L. Yadav, Sol. Stat. Commun. 152, 525–529 (2012)

    Article  Google Scholar 

  31. X. Chen, H. Zhang, T. Wang, F. Wang, W. Shi, Phys. Status Solid. A 209, 1456–1460 (2012)

    Article  Google Scholar 

  32. K. Prashanthi, G. Thakur, T. Thundat, Surf. Sci. 606, L83–L86 (2012)

    Article  Google Scholar 

  33. N. Miriyala, K. Prashanthi, T. Thundat, Phys. Status Solid. RRL 7, 668–671 (2013)

    Article  Google Scholar 

  34. S. Sharma, V. Singh, R. K. Kotnala, R. K. Dwivedi, J. Mater. Sci. 25, 1915–1921 (2014)

    Google Scholar 

  35. V. Singh, S. Sharma, R.K. Dwivedi, M. Kumar, R.K. Kotnala, Phys. Status Solidi A 210, 1442–1447 (2013)

    Article  Google Scholar 

  36. P. Kumar, C. Panda, M. Kar, Smart Mater. Struct. 24, 045028 (2015)

    Article  Google Scholar 

  37. K. Chakrabarti, K. Das, B. Sarkar, S. Ghoosh, S.K. De, G. Sinha, J. Lahtinen, App. Phys. Lett. 101, 042401 (2012)

    Article  Google Scholar 

  38. R. Das, T. Sarkar, K. Mandal, J. Phys. D 45, 455002 (2012)

    Article  Google Scholar 

  39. B. Bhushan, A. Basumallick, S.K. Bandopadhyay, N.Y. Vasanthacharya, D. Das, J. Phys. D 42, 065004 (2009)

    Article  Google Scholar 

  40. S. Layek, H.C. Verma, Adv. Mat. Lett. 3, 533–538 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors DKP and AM are respectively thankful to MPCST Bhopal (ref. no. 3667/CST/FTYS/2017) and University Grant Commission (UGC) New Delhi, for providing the financial support. Author PP is thankful to UGC for funding under D. S. Kothari post-doctoral fellowship program (ref. no. 201617-PH/15–16/0097). Authors are thankful to Dr. Mukul Gupta and Dr. U. P. Deshpande from UGC-DAE CSR, Indore for providing structural and optical characterization facilities. Authors gratefully acknowledge Dr. Apurba L. Koner from IISER-Bhopal, for morphology characterization and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, D.K., Modi, A., Pandey, P. et al. Variable excitation wavelength photoluminescence response and optical absorption in BiFeO3 nanostructures. J Mater Sci: Mater Electron 28, 17245–17253 (2017). https://doi.org/10.1007/s10854-017-7655-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7655-2

Navigation