Skip to main content
Log in

Structural and magneto-transport properties of Li-doped La0.65Ca0.35−xLixMnO3 (x = 0.20, 0.25) manganites synthesized by Pechini method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We have already reported the structural, magnetic, and transport properties of Li-doped La0.65Ca0.35−xLixMnO3 (0 ≤ x ≤ 0.15) system. With a perspective to understand the impact of substitution for higher doping level of Li at A-site which may cause drastic changes in structural, magnetic, and transport properties, Li-doped La0.65Ca0.35−xLixMnO3 (x = 0.20, 0.25) manganites were prepared via Pechini method. Their crystal structures were authenticated by the interpretation of XRD data by means of the Rietveld refinement method. Both the phases exhibit transition from paramagnetic to ferromagnetic state (PM–FM) and from semiconductor to metal at lower temperature. The experimental magnetic moment has been found to be slightly smaller than the theoretical one, which may possibly be because of magnetic inhomogeneity, such as spin glass behavior. It has been noted that the maximum resistivity (ρmax) increases from 1.26 to 12.13 Ω cm, while the temperature corresponding to metal–semiconductor transition (TMS) shifts to lower temperature as x varies from 0.20 to 0.25. The resistivity data suggest that the conduction in the phases is dominated by the adiabatic small polaron hopping (ASPH) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Maji, Curr. Sci. 112, 1390 (2017)

    Article  CAS  Google Scholar 

  2. R. Skini, M. Khlifi, M. Wali, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 363, 217 (2014)

    Article  CAS  Google Scholar 

  3. N. Zaidi, S. Mnefgui, A. Dhahri, J. Dhahri, E.K. Hlil, J. Alloys Compd. 616, 378 (2014)

    Article  CAS  Google Scholar 

  4. A. Zaidi, T. Alharbi, J. Dhahri, S. Alzobaidi, M.A. Zaidi, E.K. Hlil, Appl. Phys. A 123, 94 (2017)

    Article  Google Scholar 

  5. S. Ishihara, J. Inoue, S. Maekawa, Phys. Rev. B 55, 8280 (1997)

    Article  CAS  Google Scholar 

  6. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  CAS  Google Scholar 

  7. H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)

    Article  CAS  Google Scholar 

  8. L.M. Rodriguez-Martinez, J.P. Attfield, Phys. Rev. B 54, R15622 (1996)

    Article  CAS  Google Scholar 

  9. A. Mazur, U. van Steevendaal, K. Buse, M. Weber, O.F. Schirmer, H. Hesse, E. Krätzig, Appl. Phys. B 65, 481 (1997)

    Article  CAS  Google Scholar 

  10. P. Levy, F. Parisi, L. Granja, E. Indelicato, G. Polla, Phys. Rev. Lett. 89, 137001 (2002)

    Article  CAS  Google Scholar 

  11. A.J. Millis, Nature 392, 147 (1998)

    Article  CAS  Google Scholar 

  12. Y.Q. Ma, J. Yang, B.C. Zhao, R.L. Zhang, Z.G. Sheng, W.J. Lu, W.H. Song, J.J. Du, Y.P. Sun, Solid State Commun. 135, 361 (2005)

    Article  CAS  Google Scholar 

  13. A. Pena, J. Gutiérrez, J.M. Barandiarán, J.P. Chapman, M. Insausti, T. Rojo, J. Solid State Chem. 174, 52 (2003)

    Article  CAS  Google Scholar 

  14. A.N. Ulyanov, G.V. Gusakov, V.A. Borodin, N.Y. Starostyuk, A.B. Mukhin, Solid State Commun. 118, 103 (2001)

    Article  CAS  Google Scholar 

  15. S.O. Manjunatha, A. Rao, G.S. Okram, J. Alloys Compd. 640, 154 (2015)

    Article  CAS  Google Scholar 

  16. T. Diehl, P. Chaudouët, J.C. Joubert, J. Pierre, J. Appl. Phys. 8, 14970 (1997)

    Google Scholar 

  17. M.M. Savosta, V.A. Borodin, P. Novák, Z. Jirák, J. Hejtmánek, M. Maryško, Phys. Rev. B 57, 13379 (1998)

    Article  CAS  Google Scholar 

  18. W. Zhong, W. Chen, W.P. Ding, N. Zhang, A. Hu, Y.W. Du, Q.J. Yan, Eur. Phys. J. B 3, 169 (1998)

    Article  CAS  Google Scholar 

  19. T. Tang, Q.Q. Cao, K.M. Gu, H.Y. Xu, S.Y. Zhang, Y.W. Du, Appl. Phys. Lett. 77, 723 (2000)

    Article  Google Scholar 

  20. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, J. Alloys Compd. 814, 152279 (2020)

    Article  CAS  Google Scholar 

  21. D. Singh, A. Mahajan, Ceram. Int. 41, 15048 (2015)

    Article  CAS  Google Scholar 

  22. M. Karppinen, A. Fukuoka, L. Niinistö, H. Yamauchi, Supercond. Sci. Technol. 9, 121 (1996)

    Article  CAS  Google Scholar 

  23. A.C. Larson, R.B. Von Dreele, Generalized Structure Analysis System (GSAS) (Los Alamos National Laboratory, Washington, D.C., 1994), pp. 86–748

    Google Scholar 

  24. R.D. Shannon, Acta Crystallogr. Sec. A 32, 751 (1976)

    Article  Google Scholar 

  25. W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 453, 42 (2008)

    Article  Google Scholar 

  26. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, Canada, 1954).

    Google Scholar 

  27. D. Singh, A. Mahajan, J. Alloys Compd. 644, 172 (2015)

    Article  CAS  Google Scholar 

  28. S.C. Maatar, R. M’nassric, W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, J. Solid State Chem. 225, 83 (2015)

    Article  Google Scholar 

  29. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  30. P.P. Hankare, S.D. Jadhav, U.B. Sankpal, S.S. Chavan, K.J. Waghmare, B.K. Chougule, J. Alloys Compd. 475, 926 (2009)

    Article  CAS  Google Scholar 

  31. S. Singh, D. Singh, J. Alloys Compd. 702, 249 (2017)

    Article  CAS  Google Scholar 

  32. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, Mater. Res. Bull. 125, 110813 (2020)

    Article  Google Scholar 

  33. S.A. Ahmed, J. Magn. Magn. Mater. 340, 131 (2013)

    Article  CAS  Google Scholar 

  34. N. Choudhary, M.K. Verma, N.D. Sharma, S. Sharma, D. Singh, Mater. Chem. Phys. 242, 122482 (2020)

    Article  CAS  Google Scholar 

  35. Y. Liu, X.Y. Qin, J. Phys. Chem. Solids 67, 1893 (2006)

    Article  CAS  Google Scholar 

  36. G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 53, 14434 (1996)

    Article  CAS  Google Scholar 

  37. H.X. Xin, X.Y. Qin, X.G. Zhu, Y. Liu, J. Phys. D Appl. Phys. 39, 5331 (2006)

    Article  CAS  Google Scholar 

  38. M. Ziese, C. Srinitiwarawong, Phys. Rev. B 58, 11519 (1998)

    Article  CAS  Google Scholar 

  39. S. Bhattacharya, R.K. Mukherjee, B.K. Chaudhuri, H.D. Yang, Appl. Phys. Lett. 82, 4101 (2003)

    Article  CAS  Google Scholar 

  40. L. Malavasi, M.C. Mozzati, C.B. Azzoni, G. Chiodelli, G. Flor, Solid State Commun. 123, 321 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devinder Singh.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, M.K., Singh, D. Structural and magneto-transport properties of Li-doped La0.65Ca0.35−xLixMnO3 (x = 0.20, 0.25) manganites synthesized by Pechini method. J Mater Sci: Mater Electron 32, 9872–9885 (2021). https://doi.org/10.1007/s10854-021-05646-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05646-7

Navigation