Skip to main content
Log in

Structural, Electrical and Dielectric of Fe-Doped CaMn1−xFexO3−0.5x (x = 0.0 and 0.20)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This work focuses on the structural and electrical properties of CaMn1−xFexO3−0.5x (x = 0.0 and 0.20) perovskite compounds prepared using the ceramic method. XRD patterns confirm the formation of the orthorhombic structure with Pnma space group for the samples, and Rietveld method was used to estimate their different structural parameters. Refinement results show that the cell parameters and unit cell volume increase with increasing Fe content. The complex impedance spectroscopy technique was used to investigate the frequency and temperature dependence of electrical conductance and electrical impedance. The total conductance curves of the sample are found to obey Jonscher power law GT(ω) = Gdc + Gac = Gdc + n with an increase in frequency exponent (n) as temperature increases. Electrical impedance results show the presence of the electrical relaxation phenomenon for the samples. The activation energy deduced from the analysis of the conductance curves matches very well with the value estimated from the relaxation time, indicating that relaxation process and electrical conductivity are attributed to the same defect. The Nyquist representations have been analyzed using a proposed electrical circuit, and the results show that the grain boundary contribution is responsible to the conduction mechanism of the prepared samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757 (2010)

    Article  ADS  Google Scholar 

  2. D.K. Mahato, A. Dutta, T.P. Sinha, Bull. Mater. Sci. 120, 455 (2011)

    Article  Google Scholar 

  3. C. Bharti, T.P. Sinha, Phys. B 406, 624 (2011)

    Article  ADS  Google Scholar 

  4. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    Article  ADS  Google Scholar 

  5. J.B. Goodenough, Prog. Solid State Chem. 5, 145 (1971)

    Article  Google Scholar 

  6. D.P. Karim, A.T. Aldred, Phys. Rev. B 20, 2255 (1979)

    Article  ADS  Google Scholar 

  7. W.J. Weber, C.W. Griffen, J.L. Bates, J. Am. Chem. Soc. 70, 265 (1987)

    Google Scholar 

  8. S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M.L. Bouazizi, Ceram. Int. 16, 8 (2016)

    Google Scholar 

  9. J.H. Kuo, H.U. Anderson, D.M. Sparlin, P.E. Parris, J. Solid State Chem. 83, 52 (1989)

    Article  ADS  Google Scholar 

  10. R. Von Helmolt, Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  11. A. Omri, E. Dhahri, M. Es-Souni, M.A. Valente, L.C. Costa, J. Alloys Compd. 536, 173 (2012)

    Article  Google Scholar 

  12. S. Hcini, A. Omri, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci. Mater. Electron. 8674, 18 (2018)

    Google Scholar 

  13. A. Omri, M. Bejar, M. Sajieddine, E. Dhahri, E.K. Hlil, M. Es-Souni, Phys. B 407, 2566 (2012)

    Article  ADS  Google Scholar 

  14. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23–28 (2007)

    Article  ADS  Google Scholar 

  15. T. Tahri, N. Hamdaoui, A. Omri, S. Hcini, L. Beji, E. Dhahri, M. Es-Souni, J. Mater. Sci. Mater. Electron. 27, 10525 (2016)

    Article  Google Scholar 

  16. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  17. K. Funke, Prog. Solid State Chem. 22, 111–195 (1993)

    Article  Google Scholar 

  18. K. Batoo, Phys. B 406, 382 (2011)

    Article  ADS  Google Scholar 

  19. J. Guo, H. Zhang, Z. He, S. Li, Z. Li, J. Mater. Sci. Mater. Electron. 29, 2491 (2018)

    Article  Google Scholar 

  20. D. Johnson, ZView: a Software Program for IES Analysis, Version 2.8, Scribner Associates, Inc. Southern Pines, NC (2008)

  21. K.R. Krishna, D. Ravinder, K.V. Kumar, A.Ch. Lincon, Matter Phys. 2153, 57 (2012)

    Google Scholar 

  22. J.L. Dormann, M. Nogues, J. Phys. Condens. Matter 2, 1223 (1990)

    Article  ADS  Google Scholar 

  23. N. Rezlescu, E. Rezlescu, C. Pasnicu, M.L. Craus, J. Phys. Condens. Matter 6, 5707 (1994)

    Article  ADS  Google Scholar 

  24. G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970)

    Article  Google Scholar 

  25. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  26. M.S. Sahasrabudhe, S.I. Patil, S.K. Date, Solid State Commun. 137, 595 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tunisian National Ministry of Higher Education, Scientific Research and Technology. This work was supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under the Project No. UID/FIS/04564/2016. Access to TAIL-UC facility (XRD, SEM and DSC) funded under QREN-Mais Centro Project No. ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahri, T., Omri, A., Hamdaoui, N. et al. Structural, Electrical and Dielectric of Fe-Doped CaMn1−xFexO3−0.5x (x = 0.0 and 0.20). J Low Temp Phys 195, 230–251 (2019). https://doi.org/10.1007/s10909-019-02157-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-019-02157-y

Keywords

Navigation