Skip to main content
Log in

Study of electrical and dielectric properties of CaMn0.6Fe0.4O2.8 perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The electrical properties of CaMn0.6Fe0.4O2.8 perovskite sample have been investigated, using complex impedance analysis in 102–5.22 × 106 Hz frequency range with varying temperature from 293 to 348 K. SEM micrograph shows that the sample exhibits well-developed grains with average particle size of about 320 nm. Rietveld analysis of XRD pattern shows that sample crystallizes in the orthorhombic structure with Pnma space group. The total conductance curves of the sample are found to obey Jonscher power law G(ω) = G DC + n with an increase of frequency exponent (n) as temperature increases. The activation energy deduced from the analysis of the conductance is about 0.19 eV. The imaginary part (Z″) of the impedance is characterized by the appearance of peak which shifts to higher frequencies with the increase of temperature. Such behavior shows the existence of a relaxation process in our system. The impedance study using Nyquist representation revealed the appearance of semicircular arcs and an equivalent circuit, R 1 + (R 2 //C), has been proposed to explain the impedance results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.K. Mahato, A. Dutta, T.P. Sinha, J. Mater. Sci. 45, 6757 (2010)

    Article  Google Scholar 

  2. D.K. Mahato, A. Dutta, T.P. Sinha, Bull. Mater. Sci. 120, 455 (2011)

    Article  Google Scholar 

  3. C. Bharti, T.P. Sinha, Phys. B 406, 624 (2011)

    Article  Google Scholar 

  4. K.I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998)

    Article  Google Scholar 

  5. J.B. Goodenough, Prog. Solid State Chem. 5, 145 (1971)

    Article  Google Scholar 

  6. D.P. Karim, A.T. Aldred, Phys. Rev. B 20, 2255 (1979)

    Article  Google Scholar 

  7. W.J. Weber, C.W. Griffen, J.L. Bates, J. Am. Ceram. Soc. 70, 265 (1987)

    Article  Google Scholar 

  8. J.H. Kuo, H.U. Anderson, D.M. Sparlin, P.E. Parris, J. Solid State Chem. 83, 52 (1989)

    Article  Google Scholar 

  9. R. Von Helmolt, Phys. Rev. Lett. 71, 2331 (1993)

    Article  Google Scholar 

  10. K. Chadra et al., Appl. Phys. Lett. 63, 1990 (1993)

    Article  Google Scholar 

  11. A. Tozri, E. Dhahri, E.K. Hlil, Mater. Lett. 64, 2138 (2010)

    Article  Google Scholar 

  12. J.R. Macdonald, Impedance Spectroscopy: Emphasizing Solid Materials and Systems, vol. 33, no. 5 (Wiley, New York, 1988), p. 725

  13. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsea Dielectric Press, London, 1996)

    Google Scholar 

  14. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectric Press, London, 1983)

    Google Scholar 

  15. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  16. J. Hu, H. Qin, J. Magn. Magn. Mater. 23, L1 (2001)

    Article  Google Scholar 

  17. A. Omri, M. Bejar, E. Dhahri, M. Es-Souni, M.A. Valente, M.P.F. Graça, L.C. Costa, J. Alloys Compd. 536, 173 (2012)

    Article  Google Scholar 

  18. S. Hcini, S. Khadhraoui, A. Triki, S. Zemni, M. Boudard, M. Oumezzine, J. Supercond. Nov. Magn. 27, 195 (2013)

    Article  Google Scholar 

  19. A. Shukla, R.N.P. Choudhary, A.K. Thakur, J. Phys. Chem. Solids 70, 1401 (2009)

    Article  Google Scholar 

  20. H. Rahmouni, M. Nouiri, R. Jemai, N. Kallel, F. Rzigua, A. Selmi, K. Khirouni, S. Alaya, J. Magn. Magn. Mater. 316, 23 (2007)

    Article  Google Scholar 

  21. K.S. Cole, R.H. Cole, J. Chem. Phys. 10, 98 (1942)

    Article  Google Scholar 

  22. N.F. Mott, E.A. Davis, Electronic Properties of Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  23. D. Johnson, ZView: A Software Program for IES Analysis, Version 2.8 (Scribner Associates Inc., Southern Pines, NC, 2008)

    Google Scholar 

  24. A. Dhahri, F.I.H. Rhouma, J. Dhahri, E. Dhahri, M.A. Valente, Solid State Commun. 151, 738 (2011)

    Article  Google Scholar 

  25. M.A. Valente, M. Peres, C. Nico, T. Monteiro, M.P.F. Graça, A.S.B. Sombra, C.C. Silva, Opt. Mater. 33, 1964 (2011)

    Article  Google Scholar 

  26. H. Kolodziej, L. Sobczyk, Acta Phys. Pol. A 39, 59 (1971)

    Google Scholar 

  27. X. Qian, N. Gu, Z. Cheng, X. Yang, S. Dong, Electronichim. Acta 46, 1829 (2001)

    Article  Google Scholar 

  28. A. Benali, A. Souissi, M. Bejar, E. Dhahri, M.F.P. Graça, M.A. Valente, Chem. Phys. Lett. 637, 7 (2015)

    Article  Google Scholar 

  29. A. Benali, M. Bejar, E. Dhahri, M.F.P. Graça, L.C. Costa, J. Alloys Compd. 653, 506 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by The Tunisian National Ministry of Higher Education, Scientific Research and Technology. German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tahri, T., Hamdaoui, N., Omri, A. et al. Study of electrical and dielectric properties of CaMn0.6Fe0.4O2.8 perovskite. J Mater Sci: Mater Electron 27, 10525–10531 (2016). https://doi.org/10.1007/s10854-016-5143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5143-8

Keywords

Navigation