Skip to main content
Log in

Magnetic Field Effects on Transport Through a Strongly Correlated Dot Coupled to Luttinger Leads

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The effects of the magnetic field and intralead electron interaction on the transport have been investigated in the Kondo regime by means of the nonequilibrium Green functions with the equation of motion method. The numerical results show that for weak intralead interaction, in addition to the Kondo dip zero bias, the differential conductance shows two peaks separated from the origin by the Zeeman energy. When the intralead interaction becomes moderately strong, the Zeeman splitting peaks turn into Zeeman splitting dips. With the further increase in the intralead interaction, all the dips disappear and the differential conductance is characterized by a power law scaling in bias voltage in the limit of the strong intralead interaction. Our results are valuable for analyzing transport in carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L.I. Glazman, M.E. Raikh, JETP Lett. 47, 452 (1988)

    ADS  Google Scholar 

  2. T.K. Ng, P.A. Lee, Phys. Rev. Lett. 61, 1768 (1988)

    Article  ADS  Google Scholar 

  3. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abusch-Magder, U. Meirav, M.A. Kastner, Nature 391, 156 (1998)

    Article  ADS  Google Scholar 

  4. S.M. Cronenwett, T.H. Oosterkamp, L.P. Kouwenhoven, Science 281, 540 (1998)

    Article  ADS  Google Scholar 

  5. S. Sasaki, S. De Franceschi, J.M. Elzerman, W.G. van der Wiel, M. Eto, S. Tarucha, L.P. Kouvenhoven, Nature 405, 764 (2000)

    Article  ADS  Google Scholar 

  6. J. Gores, D. Goldhaber-Gordon, S. Heemeyer, M.A. Kastner, H. Shtrikman, D. Mahalu, U. Meirav, Phys. Rev. B 62, 2188 (2000)

    Article  ADS  Google Scholar 

  7. S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev. Lett. 67, 3720 (1991)

    Article  ADS  Google Scholar 

  8. T.A. Costi, Phys. Rev. Lett. 85, 1504 (2000)

    Article  ADS  Google Scholar 

  9. T.A. Costi, Phys. Rev. B 64, 241310(R) (2001)

    Article  ADS  Google Scholar 

  10. J.E. Moore, X.G. Wen, Phys. Rev. Lett. 85, 1722 (2000)

    Article  ADS  Google Scholar 

  11. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 70, 2601 (1993)

    Article  ADS  Google Scholar 

  12. C.H.L. Quay, J. Cumings, S.J. Gamble, R. Picciotto, H. Kataura, Goldhaber-Gordon, Phys. Rev. B 76, 245311 (2007)

    Article  ADS  Google Scholar 

  13. A.V. Kretinin, H. Shtrikman, Goldhaber-Gordon, M. Hanl, A. Weichselbaum, J. von Delft, T. Costi, D. Mahalu, Phys. Rev. B 84, 245316 (2011)

    Article  ADS  Google Scholar 

  14. P. Zhang, Q.K. Xue, Y. Wang, X.C. Xie, Phys. Rev. Lett. 89, 286803 (2002)

    Article  ADS  Google Scholar 

  15. Y. Qi, J.-X. Zhu, S. Zhang, C.S. Ting, Phys. Rev. B 78, 045305 (2008)

    Article  ADS  Google Scholar 

  16. M.-S. Choi, R. Lopez, R. Aguado, Phys. Rev. Lett. 95, 067204 (2005)

    Article  ADS  Google Scholar 

  17. V. Kashcheyevs, A. Aharony, O. Entin-Wohlman, Phys. Rev. B 73, 125338 (2006)

    Article  ADS  Google Scholar 

  18. D. Sanchez, R. Lopez, M.S. Choi, J. Supercond. 18, 251 (2005)

    Article  ADS  Google Scholar 

  19. D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 72, 3401 (1994)

    Article  ADS  Google Scholar 

  20. D.C. Ralph, R.A. Buhrman, Phys. Rev. Lett. 391, 1567 (1998)

    Google Scholar 

  21. D.C. Ralph, R.A. Buhrman, Rev. B 76, 245311 (2007)

    Article  Google Scholar 

  22. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, S. Tarucha, L.P. Kouwenhoven, Phys. Rev. Lett. 88, 126803 (2002)

    Article  ADS  Google Scholar 

  23. C.A. Balseiro, Gonzalo Usaj, M.J. Sanchez, J. Phys. Condens. Matter. 22, 425602 (2010)

    Article  Google Scholar 

  24. S. Tomonaga, Prog. Theor. Phys. (Kyoto) 5, 544 (1950)

    Article  ADS  Google Scholar 

  25. J.M. Luttinger, J. Math. Phys. 4, 1154 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  26. F.D.M. Haldane, Phys. Rev. Lett. 47, 1840 (1981)

    Article  ADS  Google Scholar 

  27. J. Voit, Rep. Prog. Phys. 57, 977 (1994)

    Google Scholar 

  28. M. Bockrath, D.H. Cobden, J. Lu, A.G. Rinzler, R.E. Smalley, L. Balents, P.L. McEuen, Nature 397, 598 (1999)

    Article  ADS  Google Scholar 

  29. X. Hoffer, C. Klinke, J.M. Bonard, L. Gravier, J.E. Wegrowe, EPL 67, 103 (2004)

    Article  ADS  Google Scholar 

  30. A.V. Shytov, L.I. Glazman, O.A. Starykh, Phys. Rev. Lett. 91, 046801 (2003)

    Article  ADS  Google Scholar 

  31. J. Nygård, W.F. Koehl, N. Mason, L. DiCarlo, C.M. Marcus. arXiv:cond-mat/0410467

  32. T.-M. Chen, A.C. Graham, M. Pepper, I. Farrer, D.A. Ritchie, Phys. Rev. B 79, 153303 (2009)

    Article  ADS  Google Scholar 

  33. P. Jiang, C.-C. Chien, I. Yang, W. Kang, K.W. Baldwin, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 105, 246801 (2010)

    Article  ADS  Google Scholar 

  34. K.-H. Yang, X. He, H.-Y. Wang, K.-D. Liu, B.-Y. Liu, Eur. Phys. J. B 87, 172 (2014)

    Article  ADS  Google Scholar 

  35. K.-H. Yang, Y. Chen, H.-Y. Wang, B.-Y. Li, Phys. Lett. A 377, 687 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  36. K.-H. Yang, B.-Y. Liu, H.-Y. Wang, K.-D. Liu, X. He, EPL 104, 37009 (2013)

    Article  ADS  Google Scholar 

  37. M. Fabrizio, A.O. Gogolin, Phys. Rev. B 51, 17827 (1995)

    Article  ADS  Google Scholar 

  38. A. Furusaki, Phys. Rev. B 57, 7141 (1998)

    Article  ADS  Google Scholar 

  39. L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965)

    Google Scholar 

  40. H. Haug, A.P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors (Springer, New York, 1996)

    Google Scholar 

  41. T.K. Ng, Phys. Rev. Lett. 76, 487 (1996)

    Article  ADS  Google Scholar 

  42. C. Lacroix, J. Phys. F: Metal. Phys. 11, 2389 (1981)

    Article  ADS  Google Scholar 

  43. S. Amasha, I.J. Gelfand, M.A. Kastner, A. Kogan, Phys. Rev. B 72, 045308 (2005)

    Article  ADS  Google Scholar 

  44. Y.-J. Bao, N.-H. Tong, Q.-F. Sun, S.-Q. Shen, EPL 83, 37007 (2008)

    Article  ADS  Google Scholar 

  45. H. Katsura, J. Phys. Soc. Jpn. 76, 054710 (2007)

    Article  ADS  Google Scholar 

  46. S. Schmitt, F.B. Anders, Phys. Rev. Lett. 107, 056801 (2011)

    Article  ADS  Google Scholar 

  47. H.-Y. Wang, Green’s Function in Condensed Matter Physics (Alpha Science International Ltd./Science Press, Beijing, 2012)

    Google Scholar 

  48. R. Van Roermund, S.-Y. Shiau, M. Lavagna, Phys. Rev. B 81, 165115 (2010)

    Article  ADS  Google Scholar 

  49. Yunong Qi, Jian-Xin Zhu, C.S. Ting, Phys. Rev. B 79, 205110 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China under Grant No. 2016YFB0700102 and Municipal Education Commission Project Scientific Research Program (KM 201610005021)2016.01-2018.12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Hua Yang.

Appendix

Appendix

In Ref. [17], a conclusion was drawn that ”at the particle–hole symmetric point the EOM Green’s function was temperature independent” [47,48,49]. Here, we show that this conclusion is not right.

At first, we review the relevant formulas in Ref. [17], the Hamiltonian was

$$\begin{aligned} H= & {} \sum \nolimits _\sigma {({\varepsilon _0} + \sigma h)} {n_{\mathrm{{d}}\sigma }} + (U/2)\sum \nolimits _\sigma {{n_{\mathrm{{d}}\sigma }}} {n_{d\bar{\sigma }}}\nonumber \\&+ \sum \nolimits _{n\sigma } {{\varepsilon _{n\sigma }}a_{n\sigma }^\dag {a_{n\sigma }}} - \sum \nolimits _{mn\sigma } {{J_{mn}}a_{m\sigma }^\dag {a_{n\sigma }}} - \sum \nolimits _{n\sigma } {({J_{n\sigma }}d_{n\sigma }^\dag {a_{n\sigma }}} + J_{n\sigma }^*a_{n\sigma }^\dag {d_\sigma }).\nonumber \\ \end{aligned}$$
(A1)

The retarded Green’s function of the quantum dot was defined as \({G_\sigma } = \langle \langle {d_\sigma };d_\sigma ^\dag \rangle \rangle \). Its equation of motion was that

$$\begin{aligned} (z - {\varepsilon _{\mathrm{{d}}\sigma }}){G_\sigma } = 1 + U\langle \langle {n_{\mathrm{{d}}\bar{\sigma }}}{d_\sigma };d_\sigma ^\dag \rangle \rangle - \sum \nolimits _n {{J_{n\sigma }}\langle \langle {a_{n\sigma }}} ;d_\sigma ^\dag \rangle \rangle . \end{aligned}$$
(A2)

The equation of motion of the Green’s function \(\langle \langle {a_{n\sigma }};d_\sigma ^\dag \rangle \rangle \mathrm{{ }}\) was that

$$\begin{aligned} (z - {\varepsilon _{n\sigma }})\langle \langle {a_{n\sigma }};d_\sigma ^\dag \rangle \rangle = - \sum \nolimits _m {{J_{nm}}\langle \langle {a_{m\sigma }}} ;d_\sigma ^\dag \rangle \rangle - J_{n\sigma }^*{G_\sigma }. \end{aligned}$$
(A3)

After defining matrices \({{(H_{\text {net}}^{\sigma })}_{mn}}={{\varepsilon }_{n\sigma }}{{\delta }_{mn}}-{{J}_{mn}}\) and

$$\begin{aligned} {{M}_{mn\sigma }}(z)={{[{{(z-H_{\text {net}}^{\sigma })}^{-1}}]}_{mn}}. \end{aligned}$$
(A4)

The following equation was reached,

$$\begin{aligned} \langle \langle {a_{n\sigma }};d_\sigma ^\dag \rangle \rangle = - \sum \nolimits _m {{M_{nm\sigma }}(z)} J_{m\sigma }^*{G_\sigma }.\mathrm{{ }} \end{aligned}$$
(A5)

Then, a self-energy was defined:

$$\begin{aligned} {{\Sigma }_{\sigma }}(z)=\sum \nolimits _{nm}{{{J}_{n\sigma }}{{M}_{nm\sigma }}}(z)J_{m\sigma }^{*}. \end{aligned}$$
(A6)

Equations (A3), (A4), (A5) and (A6) here are just Eqs. (A3), (A4), (A5) and (A7) in Ref. [17]. After some other steps, the expression of \({G_\sigma }\) was derived as \(G_{\mathrm{d}\sigma }^< (\omega ) = G_{\mathrm{d}\sigma }^r(\omega ){\Sigma ^ < }(\omega )G_{\mathrm{d}\sigma }^a(\omega )\) in [17]. Let us consider the cases of \(2{{\varepsilon }_{0}}+U=0\) and \(h=0\). At this point, the Anderson Hamiltonian becomes particle–hole symmetric. Then, the expression of \({G_\sigma }\) was simplified to be

$$\begin{aligned} {{[{{G}_{\sigma }}(z)]}^{-1}}=z-{{\Sigma }_{\sigma }}(z)-\frac{{{U}^{2}}}{4[z-{{\Sigma }_{\sigma }}(z)-2{{\Sigma }_{{\bar{\sigma }}}}(z)]}, \end{aligned}$$
(A7)

which was Eq. (14) in [17]. This expression was thought to be temperature independent, because \({M_{mn}}_\sigma \left( z \right) \) was so [17].

Now we present another expression of the \({M_{mn}}_\sigma \left( z \right) \). By the method given in Ref. [47], it is easy to give

$$\begin{aligned} \langle \langle {a_{n\sigma }};d_\sigma ^\dag \rangle \rangle = - \sum \nolimits _m {\langle \langle } {a_{n\sigma }};a_{m\lambda }^\dag \rangle \rangle J_{m\lambda }^*{G_\sigma }.\mathrm{{ }} \end{aligned}$$
(A8)

Comparison of Eqs. (A5) and (A8) demonstrates that

$$\begin{aligned} {M_{nm\sigma }} = \langle \langle {a_{n\sigma }};a_{m\sigma }^\dag \rangle \rangle . \end{aligned}$$
(A9)

Therefore, the \({{M}_{mn}}_{\sigma }\left( z \right) \)’s are actually the Green’s functions of the conductors. The Green’s functions are certainly temperature dependent, so that the \({{M}_{mn}}_{\sigma }\left( z \right) \)’s do, and the \({{\sum }_{\sigma }}\left( z \right) \) as well. The conclusion is that Eq. (A7) is temperature dependent.

Why was Eq. (A7) regarded to be temperature independent in [17]? This was because the \({{M}_{mn}}_{\sigma }\left( z \right) \)’s were believed so. Actually, they were not. By the definition Eq. (A4), it is seen that \({{M}_{mn}}_{\sigma }\left( z \right) \)’s are the matrix elements of \({{(z-H_{\text {net}}^{\sigma })}^{-1}}\). The matrix elements mean the transition of \({{M}_{mn\sigma }}(z)={{[{{(z-H_{\text {net}}^{\sigma })}^{-1}}]}_{mn}}\) between states. Particularly, the diagonal elements are the average values in the states, which are certainly temperature dependent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, KH., Wang, X., Qin, CD. et al. Magnetic Field Effects on Transport Through a Strongly Correlated Dot Coupled to Luttinger Leads. J Low Temp Phys 192, 286–298 (2018). https://doi.org/10.1007/s10909-018-1969-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1969-1

Keywords

Navigation