Skip to main content
Log in

The Stationary SQUID

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In the customary mode of operation of a SQUID, the electromagnetic field in the SQUID is an oscillatory function of time. In this situation, electromagnetic radiation is emitted and couples to the sample. This is a back action that can alter the state that we intend to measure. A circuit that could perform as a stationary SQUID consists of a loop of superconducting material that encloses the magnetic flux, connected to a superconducting and to a normal electrode. This circuit does not contain Josephson junctions, or any other miniature feature. We study the evolution of the order parameter and of the electrochemical potential in this circuit; they converge to a stationary regime, and the voltage between the electrodes depends on the enclosed flux. We obtain expressions for the power dissipation and for the heat transported by the electric current; the validity of these expressions does not rely on a particular evolution model for the order parameter. We evaluate the influence of fluctuations. For a SQUID perimeter of the order of 1\(\mu \)m and temperature \(0.9T_c\), we obtain a flux resolution of the order of \(10^{-5}\Phi _0/\)Hz\(^{1/2}\); the resolution is expected to improve as the temperature is lowered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.P. Foley, H. Hilgenkamp, Supercond. Sci. Technol. 22, 064001 (2009)

    Article  ADS  Google Scholar 

  2. W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)

    Article  ADS  Google Scholar 

  3. C. Granata, A. Vettoliere, Phys. Rep. 614, 1 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  4. E.M. Levenson-Falk, N. Antler, I. Siddiqi, Supercond. Sci. Technol. 29, 113003 (2016)

    Article  ADS  Google Scholar 

  5. M.J. Martínez-Pérez, D. Koelle, in Superconductors at the Nanoscale, ed. by R.Wördenweber, V. Moshchalkov, S. Bending, F. Tafuri (De Gruyter, Berlin, 2017); arXiv:1609.06182

  6. W. Wernsdorfer, D. Mailly, A. Benoit, J. Appl. Phys. 87, 5094 (2000)

    Article  ADS  Google Scholar 

  7. C.H. van der Wal, A.C.J. ter Haar, F.K. Wilhelm, R.N. Schouten, C.J.P.M. Harmans, T.P. Orlando, S. Lloyd, J.E. Mooij, Science 290, 773 (2000)

    Article  ADS  Google Scholar 

  8. J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarçuhu, M. Monthioux, Nat. Nanotechnol. 1, 53 (2006)

    Article  ADS  Google Scholar 

  9. R. Russo, C. Granata, E. Esposito, D. Peddis, C. Cannas, A. Vettoliere, Appl. Phys. Lett. 101, 122601 (2012)

    Article  ADS  Google Scholar 

  10. D. Hazra, J.R. Kirtley, K. Hasselbach, Appl. Phys. Lett. 104, 152603 (2014)

    Article  ADS  Google Scholar 

  11. A.G.P. Troeman, H. Derking, B. Borger, J. Pleikies, D. Veldhuis, H. Hilgenkamp, Nano Lett. 7, 2152 (2007)

    Article  ADS  Google Scholar 

  12. L. Hao, J.C. Macfarlane, J.C. Gallop, D. Cox, J. Beyer, D. Drung, T. Schurig, Appl. Phys. Lett. 92, 192507 (2008)

    Article  ADS  Google Scholar 

  13. L. Hao, J.C. Gallop, D.C. Cox, J. Chen, IEEE J. Sel. Top. Quantum Electron. 21, 1 (2015)

    Article  Google Scholar 

  14. A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, L. Ne’eman, D. Vasyukov, E. Zeldov, M.E. Huber, J. Martin, A. Yacoby, Nano Lett. 10, 1046 (2010)

    Article  ADS  Google Scholar 

  15. A. Finkler, D. Vasyukov, Y. Segev, L. Ne’eman, E.O. Lachman, M.L. Rappaport, Y. Myasoedov, E. Zeldov, M.E. Huber, Rev. Sci. Instrum. 83, 073702 (2012)

    Article  ADS  Google Scholar 

  16. D. Vasyukov, Y. Anahory, L. Embon, D. Halbertal, J. Cuppens, L. Neeman, A. Finkler, Y. Segev, Y. Myasoedov, M.L. Rappaport, M.E. Huber, E. Zeldov, Nat. Nanotechnol. 8, 639–644 (2013)

    Article  ADS  Google Scholar 

  17. L. Embon, Y. Anahory, Ž.L. Jelić, E.O. Lachman, Y. Myasoedov, M.E. Huber, G.P. Mikitik, A.V. Silhanek, M.V. Milošević, A. Gurevich, E. Zeldov, Nat. Commun. 8, 85 (2017)

    Article  ADS  Google Scholar 

  18. F. Giazotto, J.T. Peltonen, M. Meschke, J.P. Pekola, Nat. Phys. 6, 254 (2010)

    Article  Google Scholar 

  19. R.N. Jabdaraghi, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 104, 082601 (2014)

    Article  ADS  Google Scholar 

  20. A. Ronzani, C. Altimiras, F. Giazotto, Phys. Rev. Appl. 2, 024005 (2014)

    Article  ADS  Google Scholar 

  21. A. Lupaşcu, E.F.C. Driessen, L. Roschier, C.J.P.M. Harmans, J.E. Mooij, Phys. Rev. Lett. 96, 127003 (2006)

    Article  ADS  Google Scholar 

  22. M. Hatridge, R. Vijay, D.H. Slichter, J. Clarke, I. Siddiqi, Phys. Rev. B 83, 134501 (2011)

    Article  ADS  Google Scholar 

  23. J. Berger, J. Phys. Condens. Matter 29, 29LT01 (2017)

    Article  Google Scholar 

  24. K. Yu. Arutyunov, T.T. Hongisto, Phys. Rev. B 70, 064514 (2004)

  25. S. Guéron, doctoral thesis submitted to University of Paris 6 (1997), http://iramis.cea.fr/drecam/spec/Pres/Quantro/static/publications/phd-theses/index.html; H. Pothier, S. Guéron, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 73, 2488 (1994). See also V. T. Petrashov, V. N. Antonov, P. Delsing and T. Claeson, Phys. Rev. Lett. 74, 5268 (1995)

  26. A.K. Geim, S.V. Dubonos, J.G.S. Lok, I.V. Grigorieva, J.C. Maan, L.T. Hansen, P.E. Lindelof, Appl. Phys. Lett. 71, 2379 (1997)

    Article  ADS  Google Scholar 

  27. V.V. Khotkevych, M.V. Milošević, S.J. Bending, Rev. Sci. Instrum. 79, 123708 (2008)

    Article  ADS  Google Scholar 

  28. L. Thiel, D. Rohner, M. Ganzhorn, P. Appel, E. Neu, B. Müller, R. Kleiner, D. Koelle, P. Maletinsky, Nat. Nanotechnol. 11, 677 (2016)

    Article  ADS  Google Scholar 

  29. G.R. Berdiyorov, M.V. Milošević, F.M. Peeters, Phys. Rev. B 81, 144511 (2010)

    Article  ADS  Google Scholar 

  30. A.A. Burlakov, V.L. Gurtovoi, S.V. Dubonos, A.V. Nikulov, V.A. Tulin, Pis’ma Zh. Eksp. Teor. Fiz. 86, 589 (2007). [JETP Lett. 86, 517 (2007)]

    Google Scholar 

  31. A.A. Burlakov, V.L. Gurtovoi, A.I. Il’in, A.V. Nikulov, V.A. Tulin, Pis’ma Zh. Eksp. Teor. Fiz. 99, 190 (2014). [JETP Lett. 99, 169 (2014)]

    Google Scholar 

  32. N.B. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendon Press, Oxford, 2001)

    Book  Google Scholar 

  33. L. Kramer, R.J. Watts-Tobin, Phys. Rev. Lett. 40, 1041 (1978)

    Article  ADS  Google Scholar 

  34. R.J. Watts-Tobin, Y. Krähenbühl, L. Kramer, J. Low Temp. Phys. 42, 459 (1981)

    Article  ADS  Google Scholar 

  35. J. Berger, Phys. Rev. B 92, 064513 (2015)

    Article  ADS  Google Scholar 

  36. G. Richardson, J. Rubinstein, Proc. R. Soc. Lond. A 455, 2549 (1999)

    Article  ADS  Google Scholar 

  37. S.B. Kaplan, C.C. Chi, D.N. Langenberg, J.J. Chang, S. Jafarey, D.J. Scalapino, Phys. Rev. B 14, 4854 (1977). [erratum Phys. Rev. B 15, 3567]

  38. L. Parlato, R. Latempa, G. Peluso, G.P. Pepe, R. Cristiano, R. Sobolewski, Supercond. Sci. Technol. 18, 1244 (2005)

    Article  ADS  Google Scholar 

  39. J. Rubinstein, P. Sternberg, Q. Ma, Phys. Rev. Lett. 99, 167003 (2007)

    Article  ADS  Google Scholar 

  40. P.G. de Gennes, C.R. Acad, Sci. Paris II 292, 279 (1981)

    Google Scholar 

  41. M. Kato, O. Sato, Supercond. Sci. Technol. 26, 033001 (2013)

    Article  ADS  Google Scholar 

  42. W.J. Skocpol, M.R. Beasley, M. Tinkham, J. Appl. Phys. 45, 4054 (1974)

    Article  ADS  Google Scholar 

  43. D. Hazra, L.M.A. Pascal, H. Courtois, A.K. Gupta, Phys. Rev. B 82, 184530 (2010)

    Article  ADS  Google Scholar 

  44. J. Berger, J. Phys. Condens. Matter 23, 225701 (2011)

    Article  ADS  Google Scholar 

  45. A. Schmid, Phys. Kondens. Materie 5, 302 (1966). Note that in Eq. (12.3) in Ref. 32, \(\hbar \) was set as 1

Download references

Acknowledgements

Numeric evaluations were performed using computer facilities of the Technion—Israel Institute of Technology. The author has benefited from remarks by Michel Devoret and from correspondence with Hugues Pothier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Berger.

Appendix A: Energy Balance in a Wire

Appendix A: Energy Balance in a Wire

Our analysis is an adaptation of Schmid’s seminal work [45]. Schmid’s analysis was intended to deal with the case of TDGL, but we will keep our expressions in a form that is valid for whatever evolution of the order parameter.

We initially use the gauge in which the scalar potential \(\varphi \) is zero. In the units defined in Eq. (1), the Ginzburg–Landau energy of a segment of 1D wire of length dx is

$$\begin{aligned} F_\mathrm{GL}=\frac{u}{2} (-\epsilon |\psi |^2+\frac{1}{2}|\psi |^4+|{\mathcal D}\psi |^2)w\hbox {d}x. \end{aligned}$$
(10)

The unit of energy is \(t_0\varphi _0j_0\xi ^2 (0)=2\sigma \hbar k_BT_c\xi (0)/\pi e^2\).

Taking the derivative with respect to time we obtain

$$\begin{aligned} \hbox {d}F_\mathrm{GL}/\hbox {d}t = (u/2) [(\partial _t\psi ^*)(-\epsilon +|\psi |^2\,+\,iA{\mathcal D})\psi \,+(\partial _{tx}^2\psi ^*){\mathcal D}\psi +i(\partial _tA)\psi ^*{\mathcal D}\psi ]w\hbox {d}x\,+\,\mathrm{cc}, \end{aligned}$$
(11)

and substituting \(w(\partial _{tx}^2\psi ^*){\mathcal D}\psi =\partial _x[w(\partial _t\psi ^*){\mathcal D}\psi ]-(\partial _t\psi ^*)[(\partial _xw){\mathcal D}\psi +w\partial _x({\mathcal D}\psi )]\), this becomes

(12)

We now switch to the gauge in which A does not depend on time. \(\partial _tA\) is substituted by \(\partial _x\varphi \) and \(\partial _t\psi \) by \(\partial _t\psi +i\varphi \). We obtain

$$\begin{aligned} \hbox {d}F_\mathrm{GL}/\hbox {d}t=u\{\mathrm{Re}[(\partial _t\psi +i\varphi \psi )^*\left( -\epsilon +|\psi |^2-{\mathcal D}^2-(w'/w){\mathcal D}\right) \psi ]w \nonumber \\- {} (\partial _x\varphi )\mathrm{Im}(\psi ^*{\mathcal D}\psi )w +\partial _x\mathrm{Re}[w(\partial _t\psi +i\varphi \psi )^*{\mathcal D}\psi ]\} \hbox {d}x. \end{aligned}$$
(13)

In addition to the Ginzburg–Landau energy, we take into account the electrochemical energy. Assuming electroneutrality, its rate of increment is \(wj\partial _x\varphi \, \hbox {d}x\). Adding this quantity to Eq. (13) and using Eq. (3), the rate of energy change of the segment becomes

$$\begin{aligned} \hbox {d}F_\mathrm{total}/\hbox {d}t= & {} \{u\mathrm{Re}[(\partial _t\psi +i\varphi \psi )^*(-\,\epsilon +|\psi |^2-{\mathcal D}^2-(w'/w){\mathcal D})\psi ]w \nonumber \\- & {} (\partial _x\varphi )^2 w +u\partial _x\mathrm{Re}[w(\partial _t\psi +i\varphi \psi )^*{\mathcal D}\psi ]\} \hbox {d}x. \end{aligned}$$
(14)

We finally note that if the volume density of power dissipation is W, and the energy flow is \(I_\mathrm{E}\), then this rate of change is \(\hbox {d}F_\mathrm{total}/\hbox {d}t=-(Ww+\partial _xI_\mathrm{E})\hbox {d}x\). From here and from Eq. (14) we identify

$$\begin{aligned} W=(\partial _x\varphi )^2+u\mathrm{Re}[(\partial _t\psi +i\varphi \psi )^*\left( \epsilon -|\psi |^2+{\mathcal D}^2+(w'/w){\mathcal D}\right) \psi ] \,, \end{aligned}$$
(15)

and

$$\begin{aligned} I_\mathrm{E}= -\,uw\mathrm{Re}[(\partial _t\psi +i\varphi \psi )^*{\mathcal D}\psi ]. \end{aligned}$$
(16)

The first term in W is the Joule dissipation, and the second term is due to the relaxation of the order parameter. In the limiting case of TDGL, \(\partial _t \psi =[\epsilon -|\psi |^2- i\varphi +{\mathcal D}^2+(w'/w){\mathcal D}]\psi \) and we recover the result in [45].

Since \(\psi \) and \(\varphi \) are continuous, it follows from Eq. (16) that the constraint \(\sum _{n=1}^3\pm \,{\mathcal D}\psi _n=0\) not only ensures charge conservation at the contacts between the ring and the connectors, but also energy conservation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, J. The Stationary SQUID. J Low Temp Phys 191, 330–343 (2018). https://doi.org/10.1007/s10909-018-1851-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1851-1

Keywords

Navigation