Skip to main content

Advertisement

Log in

Wide-band tuneability, nonlinear transmission, and dynamic multistability in SQUID metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Superconducting metamaterials comprising rf Superconducting QUantum Interference Devices (SQUIDs) have been recently realized and investigated with respect to their tuneability, permeability, and dynamic multistability properties. These properties are a consequence of intrinsic nonlinearities due to the sensitivity of the superconducting state to external stimuli. SQUIDs, made of a superconducting ring interrupted by a Josephson junction, possess yet another source of nonlinearity, which makes them widely tuneable with an applied dc dlux. A model SQUID metamaterial, based on electric equivalent circuits, is used in the weak coupling approximation to demonstrate the dc flux tuneability, dynamic multistability, and nonlinear transmission in SQUID metamaterials comprising non-hysteretic SQUIDs. The model equations reproduce the experimentally observed tuneability patterns and predict tuneability with the power of an applied ac magnetic field. Moreover, the results indicate the opening of nonlinear frequency bands for energy transmission through SQUID metamaterials, for sufficiently strong ac fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.M. Anlage, J. Opt. 13, 024001 (2011)

    Article  ADS  Google Scholar 

  2. In Special Issue: Focus on Superconducting Metamaterials, vol. 26, ed. by A.V. Ustinov, S. Anlage, A. Sanchez (Supercond. Sci. Technol. 2013)

  3. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire. Science 305(5685), 788 (2004)

  4. V.M. Shalaev, Nat. Photonics 1, 41 (2007)

    Article  ADS  Google Scholar 

  5. C.M. Soukoulis, M. Wegener, Nat. Photonics 5, 523 (2011)

    ADS  Google Scholar 

  6. I.V. Shadrivov, A.B. Kozyrev, D.W. van der Weide, Y.S. Kivshar, Appl. Phys. Lett. 93, 161903 (2008)

    Article  ADS  Google Scholar 

  7. N.I. Zheludev, Science 328, 582 (2010)

    Article  ADS  Google Scholar 

  8. N.I. Zheludev, Opt. Photonics News 22, 31 (2011)

    Article  ADS  Google Scholar 

  9. M.C. Ricci, N. Orloff, S.M. Anlage, Appl. Phys. Lett. 87, 034102 (2005)

    Article  ADS  Google Scholar 

  10. M.C. Ricci, H. Xu, R. Prozorov, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, IEEE Trans. Appl. Supercond. 17, 918 (2007)

    Article  ADS  Google Scholar 

  11. H.T. Chen, H. Yang, R. Singh, J.F. OHara, A.K. Azad, A. Stuart, S.A. Trugman, Q.X. Jia, A.J. Taylor, Phys. Rev. Lett. 105, 247402 (2010)

  12. B. Jin, C. Zhang, S. Engelbrecht, A. Pimenov, J. Wu, Q. Xu, C. Cao, J. Chen, W. Xu, Opt. Express 18, 17504 (2010)

    Article  Google Scholar 

  13. V.A. Fedotov, A. Tsiatmas, J.H. Shi, R. Buckingham, P. de Groot, Y. Chen, S. Wang, N.I. Zheludev, Opt. Express 18, 9015 (2010)

    Article  ADS  Google Scholar 

  14. C. Kurter, P. Tassin, A.P. Zhuravel, L. Zhang, T. Koschny, A.V. Ustinov, C.M. Soukoulis, S.M. Anlage, Appl. Phys. Lett. 100, 121906 (2012)

    Article  ADS  Google Scholar 

  15. R. Singh, J. Xiong, A.K. Azad, H. Yang, S.A. Trugman, Q.X. Jia, A.J. Taylor, H.T. Chen, Nanophotonics 1, 117–123 (2012)

    Article  ADS  Google Scholar 

  16. R. Singh, J. Xiong, D.R. Chowdhury, H. Yang, A.K. Azad, S.A. Trugman, Q.X. Jia, A.J. Taylor, H.T. Chen, Proc. SPIE 8423, 84230Y (2012)

    Article  Google Scholar 

  17. V. Savinov, V.A. Fedotov, S.M. Anlage, P.A.J. de Groot, N.I. Zheludev, Phys. Rev. Lett. 109, 243904 (2012)

    Article  ADS  Google Scholar 

  18. P. Jung, S. Butz, S.V. Shitov, A.V. Ustinov, Appl. Phys. Lett. 102, 062601 (2013)

    Article  ADS  Google Scholar 

  19. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Opt. Express 29(19), 22540 (2013)

    Article  ADS  Google Scholar 

  20. D. Zueco, C. Fernández-Juez, J. Yago, U. Naether, B. Peropadre, J.J. García-Ripoll, J.J. Mazo, Supercond. Sci. Technol. 26, 074006 (8pp) (2013)

  21. B. Josephson, Phys. Lett. A 1, 251 (1962)

    Article  MATH  Google Scholar 

  22. A. Barone, G. Patternó, Physics and Applications of the Josephson Effect (Wiley, New York, 1982)

    Book  Google Scholar 

  23. K.K. Likharev, Dynamics of Josephson Junctions and Circuits (Gordon and Breach, Philadelphia, 1986)

  24. M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, arXiv:1308.1410 (2013)

  25. P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppäkangas, V.P. Koshelets, A.V. Ustinov, arXiv:1312.2937 (2013)

  26. W.G. Jenks, S.S.H. Sadeghi, J.P.W. Jr, J. Phys. D: Appl. Phys. 30, 293 (1997)

    Article  ADS  Google Scholar 

  27. D. Koelle, R. Kleiner, F. Ludwig, E. Dantsker, J. Clarke, Rev. Mod. Phys. 71, 631 (1999)

    Article  ADS  Google Scholar 

  28. R. Kleiner, D. Koelle, F. Ludwig, J. Clarke, Proc. IEEE 92, 1534 (2004)

    Article  Google Scholar 

  29. R.L. Fagaly, Rev. Sci. Instrum. 77, 101101 (2006)

    Article  ADS  Google Scholar 

  30. C. Du, H. Chen, S. Li, Phys. Rev. B 74, 113105 (2006)

    Article  ADS  Google Scholar 

  31. N. Lazarides, G.P. Tsironis, Appl. Phys. Lett. 16, 163501 (2007)

    Article  ADS  Google Scholar 

  32. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Supercond. Sci. Technol. 26, 094003 (2013)

    Article  ADS  Google Scholar 

  33. N. Lazarides, G.P. Tsironis, M. Eleftheriou, Nonlinear Phenom. Complex Syst. 11, 250 (2008)

    Google Scholar 

  34. G.P. Tsironis, N. Lazarides, M. Eleftheriou, PIERS Online 5, 26 (2009)

    Article  Google Scholar 

  35. N. Lazarides, G.P. Tsironis, Proc. SPIE 8423, 84231K (2012)

    Article  ADS  Google Scholar 

  36. W. Wernsdorfer, Supercond. Sci. Technol. 22, 064013 (2009)

    Article  ADS  Google Scholar 

  37. J. Gu, R. Singh, Z. Tian, W. Cao, Q. Xing, M.X. He, J.W. Zhang, J. Han, H. Chen, W. Zhang, Appl. Phys. Lett. 97, 071102 (2010)

    Article  ADS  Google Scholar 

  38. C.H. Zhang, J.B. Wu, B.B. Jin, Z.M. Ji, L. Kang, W.W. Xu, J. Chen, M. Tonouchi, P.H. Wu, Opt. Express 20(1), 42 (2011)

    Article  ADS  Google Scholar 

  39. J.B. Wu, B.B. Jin, J. Wan, L. Liang, Y.G. Zhang, T. Jia, C.H. Cao, L. Kang, W.W. Xu, J. Chen, P.H. Wu, Appl. Phys. Lett. 99, 161113 (2011)

    Article  ADS  Google Scholar 

  40. C.H. Zhang, J.B. Wu, B.B. Jin, Z.M. Ji, L. Kang, W.W. Xu, J. Chen, M. Tonouchi, P.H. Wu, Opt. Express 20(1), 42 (2012)

    Article  ADS  Google Scholar 

  41. C.H. Zhang, J.H.B.B. Jin, I. Kawayama, H. Murakami, X. Jia, L. Liang, L. Kang, J. Chen, P. Wu, M. Tonouchi, New J. Phys. 15, 055017 (2013)

    Article  ADS  Google Scholar 

  42. B.B. Jin, C.H. Zhang, J. Han, I. Kawayama, H. Murakami, J.B. Wu, L. Kang, J. Chen, P.H. Wu, M. Tonouchi, Appl. Phys. Lett. 102, 081121 (2013)

    Article  ADS  Google Scholar 

  43. A. Pimenov, A. Loidl, P. Przyslupski, B. Dabrowski, Phys. Rev. Lett. 95, 247009 (2005)

    Article  ADS  Google Scholar 

  44. A.G. Kussow, A. Akyurtlu, A. Semichaevsky, N. Angkawisittpan, Phys. Rev. B 76, 195123 (2007)

    Article  ADS  Google Scholar 

  45. N. Limberopoulos, A. Akyurtlu, K. Higginson, A.G. Kussow, C.D. Merritt, Appl. Phys. Lett. 95, 023306 (2009)

    Article  ADS  Google Scholar 

  46. A.L. Rakhmanov, V.A. Yampolskii, J.A. Fan, F. Capasso, F. Nori, Phys. Rev. B 81(7), 075101 (2010)

    Article  ADS  Google Scholar 

  47. V.A. Golick, D.V. Kadygrob, V.A. Yampolskii, A.L. Rakhmanov, B.A. Ivanov, F. Nori, Phys. Rev. Lett. 104, 187003 (2010)

    Article  ADS  Google Scholar 

  48. C. Kurter, P. Tassin, L. Zhang, T. Koschny, A.P. Zhuravel, A.V. Ustinov, S.M. Anlage, C.M. Soukoulis, Phys. Rev. Lett. 107, 043901 (2011)

    Article  ADS  Google Scholar 

  49. J. Prat-Camps, A. Sanchez, C. Navau, Supercond. Sci. Technol. 26, 074001 (2013)

    Article  ADS  Google Scholar 

  50. M.A. Castellanos-Beltran, K.D. Irwin, G.C. Hilton, L.R. Vale, K.W. Lehnert, Nat. Phys. 4, 928 (2008)

    Article  Google Scholar 

  51. F. Magnus, B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M.C.K. Wiltshire, D. Caplini, L.F. Cohen, J.B. Pendry, Nat. Mater. 7, 295 (2008)

    Article  ADS  Google Scholar 

  52. C. Navau, D.X. Chen, A. Sanchez, N. Del-Valle, Appl. Phys. Lett. 94(24), 242501 (2009)

    Article  ADS  Google Scholar 

  53. Y. Mawatari, C. Navau, A. Sanchez, Phys. Rev. B 85, 134524 (2012)

    Article  ADS  Google Scholar 

  54. Y. Mawatari, Supercond. Sci. Technol. 26, 074005 (2013)

    Article  ADS  Google Scholar 

  55. C. Kurter, J. Abrahams, S.M. Anlage, Appl. Phys. Lett. 96, 253504 (2010)

    Article  ADS  Google Scholar 

  56. B.G. Ghamsari, J. Abrahams, S. Remillard, S.M. Anlage, Appl. Phys. Lett. 102(1), 013503 (2013)

    Article  ADS  Google Scholar 

  57. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu, Opt. Express 19, 12021 (2011)

    Article  ADS  Google Scholar 

  58. A. Tsiatmas, V.A. Fedotov, F.J.G. de Abajo, N.I. Zheludev, New J. Phys. 14, 115006 (2012)

    Article  ADS  Google Scholar 

  59. J. Zuo, R. Liu, Y. Zhou, Y. Li, Y. Wang, Sci. China Phys. Mech. Astron. 55(2), 224 (2012)

  60. A.M. Zagoskin, J. Opt. 14, 114011 (2012)

    Article  ADS  Google Scholar 

  61. S.I. Mukhin, M.V. Fistul, Supercond. Sci. Technol. 26, 084003 (2013)

  62. R.D. Wilson, M.J. Everitt, S. Savelev, A.M. Zagoskin, Supercond. Sci. Technol. 26, 084005 (2013)

    Article  ADS  Google Scholar 

  63. P. Macha, G. Oelsner, J.M. Reiner, M. Marthaler, S. André, G. Schön, U. Hübner, H.G. Meyer, E. Il’ichev, A.V. Ustinov, arXiv:1309.5268v1 (2013)

  64. N. Lazarides, G.P. Tsironis, Supercond. Sci. Technol. 26, 084006 (2013)

    Article  ADS  Google Scholar 

  65. N. Lazarides, V. Paltoglou, G.P. Tsironis, Int. J. Bifurcation Chaos 21, 2147 (2011)

    Article  MATH  ADS  Google Scholar 

  66. N. Lazarides, G.P. Tsironis, Phys. Lett. A 374, 2179 (2010)

    Article  ADS  Google Scholar 

  67. Y. Huang, W.F. McColl, J. Phys. A: Math. Gen. 30, 7919 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the European Union’s Seventh Framework Programme (FP7-REGPOT-2012-2013-1) under Grant Agreement No. 316165 and by the Thales Project MACOMSYS, cofinanced by the European Union (European Social Fund ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lazarides.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsironis, G.P., Lazarides, N. & Margaris, I. Wide-band tuneability, nonlinear transmission, and dynamic multistability in SQUID metamaterials. Appl. Phys. A 117, 579–588 (2014). https://doi.org/10.1007/s00339-014-8706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8706-7

Keywords

Navigation