Skip to main content
Log in

Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Three-dimensional topological semimetals can support band crossings along one-dimensional curves in the momentum space (nodal lines or Dirac lines) protected by structural symmetries and topology. We consider rhombohedrally (ABC) stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inversion and spin rotation symmetries. For typical band structure parameters there exists a pair of nodal lines in the momentum space extending through the whole Brillouin zone in the stacking direction. We show that these Dirac lines are topologically distinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In particular, an energy gap can be opened only by first merging the Dirac lines going through the Brillouin zone in a pairwise manner so that they turn into closed loops inside the Brillouin zone, and then by shrinking these loops into points. We show that this kind of topological phase transition can occur in rhombohedrally stacked honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions perpendicular and parallel to the layers. We also discuss the properties of the surface states in the different phases of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Berry phase \(\phi \) depends on the convention used for the overall phase of the wavefunctions. Therefore, it is uniquely defined only up to \(n 2 \pi \) (\(n \in {\mathbb {Z}}\)). Here, for simplicity we fix the convention for the overall phase in such a way that \(0 \le \phi < 2 \pi \). This automatically fixes also a specific convention for the Berry connection \({\varvec{\mathcal{A}}}({\mathbf {k}})\).

  2. We can generalize the argument also to the case where the system has a chiral symmetry. In this case, the Hamiltonian can be always block-off-diagonalized and the Berry phase \(\phi /\pi \) in Eq. (5) can be replaced with the winding number of the determinant of the off-diagonal block of the Hamiltonian. The difference is that this new winding number does not have the same ambiguity as the Berry phase related to the shifts of \(n 2 \pi \) (\(n \in {\mathbb {Z}}\)) and therefore \(Q_M\) becomes a \({\mathbb {Z}}\) topological invariant. Because in these symmetry classes \(|Q_M|=\nu \) only the Dirac lines with \(\nu =0\) can be created and annihilated individually. In the special case of 2\(\times 2\) Hamiltonian with time-reversal and inversion symmetries, the Hamiltonian automatically has a chiral symmetry up to terms proportional to \(\sigma _0\). Because the terms proportional to \(\sigma _0\) do not influence the existence of the Dirac lines the \({\mathbb {Z}}\) topological invariant can be defined also in this case.

References

  1. G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  2. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  3. X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  4. A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  5. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  6. J.W. McClure, Phys. Rev. 108, 612 (1957)

    Article  ADS  Google Scholar 

  7. H.B. Nielsen, M. Ninomiya, Phys. Lett. B 130, 389 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.E. Volovik, JETP Lett. 46, 98 (1987)

    ADS  Google Scholar 

  9. S. Ryu, Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002)

    Article  ADS  Google Scholar 

  10. P. Horava, Phys. Rev. Lett. 95, 016405 (2005)

    Article  ADS  Google Scholar 

  11. G.P. Mikitik, YuV Sharlai, Phys. Rev. B 73, 235112 (2006)

    Article  ADS  Google Scholar 

  12. G.P. Mikitik, YuV Sharlai, Low Temp. Phys. 34, 794 (2008)

    Article  ADS  Google Scholar 

  13. T.T. Heikkilä, G.E. Volovik, JETP Lett. 93, 59 (2011)

    Article  ADS  Google Scholar 

  14. T.T. Heikkilä, N.B. Kopnin, G.E. Volovik, JETP Lett. 94, 233 (2011)

    Article  ADS  Google Scholar 

  15. A.A. Burkov, M.D. Hook, L. Balents, Phys. Rev. B 84, 235126 (2011)

    Article  ADS  Google Scholar 

  16. Y. Kim, B.J. Wieder, C.L. Kane, A.M. Rappe, Phys. Rev. Lett. 115, 036806 (2015)

    Article  ADS  Google Scholar 

  17. C. Fang, Y. Chen, H.-Y. Kee, L. Fu, Phys. Rev. B 92, 081201(R) (2015)

    Article  ADS  Google Scholar 

  18. Y.-H. Chan, C.-K. Chiu, M.Y. Chou, A.P. Schnyder, Phys. Rev. B 93, 205132 (2016)

    Article  ADS  Google Scholar 

  19. T.T. Heikkilä, G.E. Volovik, New J. Phys. 17, 093019 (2015)

    Article  ADS  Google Scholar 

  20. T. Hyart, T.T. Heikkilä, Phys. Rev. B 93, 235147 (2016)

    Article  ADS  Google Scholar 

  21. Z. Zhu, G.W. Winkler, Q. Wu, J. Li, A.A. Soluyanov, Phys. Rev. X 6, 031003 (2016)

    Google Scholar 

  22. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Science 353, aaf5037 (2016)

    Article  Google Scholar 

  23. T. Bzdusek, Q. Wu, A. Rüegg, M. Sigrist, A.A. Soluyanov, Nature 538, 75 (2016)

    Article  ADS  Google Scholar 

  24. M. Ezawa, Phys. Rev. Lett. 116, 127202 (2016)

    Article  ADS  Google Scholar 

  25. M. Horsdal, T. Hyart, SciPost Phys. 3, 041 (2017)

  26. Z. Yan, R. Bi, H. Shen, L. Lu, S.-C. Zhang, Z. Wang, Phys. Rev. B 96, 041103(R) (2017)

    Article  ADS  Google Scholar 

  27. M. Ezawa, Phys. Rev. B 96, 041202(R) (2017)

    Article  ADS  Google Scholar 

  28. T. Bzdusek, M. Sigrist, Phys. Rev. B 96, 155105 (2017)

    Article  ADS  Google Scholar 

  29. A. Bouhon, A.M. Black-Schaffer, arXiv:1710.04871 (2017)

  30. Y. Hasegawa, R. Konno, H. Nakano, M. Kohmoto, Phys. Rev. B 74, 033413 (2006)

    Article  ADS  Google Scholar 

  31. S. Katayama, A. Kobayashi, Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006)

    Article  ADS  Google Scholar 

  32. G. Montambaux, F. Piéchon, J.-N. Fuchs, M.O. Goerbig, Phys. Rev. B 80, 153412 (2009)

    Article  ADS  Google Scholar 

  33. L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger, Nature 483, 302 (2012)

    Article  ADS  Google Scholar 

  34. M. Bellec, U. Kuhl, G. Montambaux, F. Mortessagne, Phys. Rev. Lett. 110, 033902 (2013)

    Article  ADS  Google Scholar 

  35. M.C. Rechtsman, Y. Plotnik, J.M. Zeuner, D. Song, Z. Chen, A. Szameit, M. Segev, Phys. Rev. Lett. 111, 103901 (2013)

    Article  ADS  Google Scholar 

  36. L. Duca, T. Li, M. Reitter, I. Bloch, M. Schleier-Smith, U. Schneider, Science 347, 288 (2015)

    Article  ADS  Google Scholar 

  37. J. Kim, S.S. Baik, S.H. Ryu, Y. Sohn, S. Park, B.-G. Park, J. Denlinger, Y. Yi, H.J. Choi, K.S. Kim, Science 349, 723 (2015)

    Article  Google Scholar 

  38. G.E. Volovik, Lect. Notes Phys. 718, 31 (2007)

    Article  ADS  Google Scholar 

  39. S. Murakami, New J. Phys. 9, 356 (2007)

    Article  ADS  Google Scholar 

  40. S. Murakami, S.-I. Kuga, Phys. Rev. B 78, 165313 (2008)

    Article  ADS  Google Scholar 

  41. A.A. Zyuzin, V.A. Zyuzin, JETP Lett. 102, 113 (2015)

    Article  ADS  Google Scholar 

  42. M. Ezawa, New J. Phys. 16, 115004 (2014)

    Article  ADS  Google Scholar 

  43. N.B. Kopnin, M. Ijäs, A. Harju, T.T. Heikkilä, Phys. Rev. B 87, 140503(R) (2013)

    Article  ADS  Google Scholar 

  44. N.B. Kopnin, T.T. Heikkilä, G.E. Volovik, Phys. Rev. B 83, 220503(R) (2011)

    Article  ADS  Google Scholar 

  45. B. Pamuk, J. Baima, F. Mauri, M. Calandra, Phys. Rev. B 95, 075422 (2017)

    Article  ADS  Google Scholar 

  46. T. Löthman, A.M. Black-Schaffer, Phys. Rev. B 96, 064505 (2017)

    Article  ADS  Google Scholar 

  47. V.J. Kauppila, T. Hyart, T.T. Heikkilä, Phys. Rev. B 93, 024505 (2016)

    Article  ADS  Google Scholar 

  48. D. Pierucci, H. Sediri, M. Hajlaoui, J.-C. Girard, T. Brumme, M. Calandra, E. Velez-Fort, G. Patriarche, M.G. Silly, G. Ferro, V. Soulière, M. Marangolo, F. Sirotti, F. Mauri, A. Ouerghi, ACS Nano 9, 5432 (2015)

    Article  Google Scholar 

  49. Y. Henni, H.P. Ojeda Collado, K. Nogajewski, M.R. Molas, G. Usaj, C.A. Balseiro, M. Orlita, M. Potemski, C. Faugeras, Nano Lett. 16, 3710 (2016)

    Article  ADS  Google Scholar 

  50. P. Esquinazi, N. Garcia, J. Barzola-Quiquia, P. Rödiger, K. Schindler, J.-L. Yao, M. Ziese, Phys. Rev. B 78, 134516 (2008)

    Article  ADS  Google Scholar 

  51. T. Scheike, W. Böhlmann, P. Esquinazi, J. Barzola-Quiquia, A. Ballestar, A. Setzer, Adv. Mater. 24, 5826 (2012)

    Article  Google Scholar 

  52. A. Ballestar, J. Barzola-Quiquia, T. Scheike, P. Esquinazi, New J. Phys. 15, 023024 (2013)

    Article  ADS  Google Scholar 

  53. C.E. Precker, P.D. Esquinazi, A. Champi, J. Barzola-Quiquia, M. Zoraghi, S. Muinos-Landin, A. Setzer, W. Böhlmann, D. Spemann, J. Meijer, T. Muenster, O. Baehre, G. Kloess, H. Beth, New J. Phys. 18, 113041 (2016)

    Article  ADS  Google Scholar 

  54. M. Stiller, P.D. Esquinazi, C.E. Precker, J. Barzola-Quiquia, arXiv:1705.09909 (2017)

  55. M. Zoraghi, J. Barzola-Quiquia, M. Stiller, A. Setzer, P. Esquinazi, G.H. Kloess, T. Muenster, T. Lühmann, I. Estrela-Lopis, Phys. Rev. B 95, 045308 (2017)

    Article  ADS  Google Scholar 

  56. A.L. Tchougreeff, R. Hoffmann, J. Phys. Chem. 96, 8993 (1992)

    Article  Google Scholar 

  57. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. E. Volovik, T. Bzdusek and A. Bouhon for fruitful discussions and comments. This work was supported by the Academy of Finland Centre of Excellence and Key Funding programs (Project Nos. 284594 and 305256).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hyart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyart, T., Ojajärvi, R. & Heikkilä, T.T. Two Topologically Distinct Dirac-Line Semimetal Phases and Topological Phase Transitions in Rhombohedrally Stacked Honeycomb Lattices. J Low Temp Phys 191, 35–48 (2018). https://doi.org/10.1007/s10909-017-1846-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1846-3

Keywords

Navigation