Skip to main content

Advertisement

Log in

Physical Properties of \((\hbox {BaSnO}_{3})_\mathrm{x}/\hbox {Cu}_{0.5}\hbox {Tl}_{0.5}\hbox {Ba}_{2}\hbox {Ca}_{2}\hbox {Cu}_{3}\hbox {O}_{10{-}\delta }\) Superconductor Composite

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The influence of barium tin oxide nanoparticles addition on the structural and superconducting properties of the \(\hbox {Cu}_{0.5}\hbox {Tl}_{0.5}\hbox {Ba}_{2}\hbox {Ca}_{2}\hbox {Cu}_{3}\hbox {O}_{10{-}\delta }\) phase, (CuTl)-1223, was studied. A different wt% of \(\hbox {BaSnO}_{3}\), ranging from 0.00 to 1.50, were added into (CuTl)-1223 phase, and this composite was synthesized using the solid-state reaction technique. The phase formation and lattice parameters were calculated from X-ray powder diffraction measurements. The grain connectivity and surface morphology were identified using scanning electron microscope. Energy dispersive X-ray spectroscopy gave the real elemental composition of the prepared samples. Superconducting transition temperature \(({T_\mathrm{c}})\) and critical current density \(({J_\mathrm{c}})\) were determined from the electrical resistivity and I–V measurements, respectively. A complete study about the vibration modes of different atoms was carried out using Fourier transform infrared (FTIR) absorption spectroscopy of \((\hbox {BaSnO}_{3})_\mathrm{x}/\hbox {CuTl-1223}\) composite. The increase in \({T_\mathrm{c}}\) and \({J_\mathrm{c}}\) up to \(x=0.25\) wt% is an evidence for improving the superconducting properties of \((\hbox {BaSnO}_{3})_\mathrm{x}/\hbox {CuTl-1223}\) composites by enhancing both the inter-grains coupling and volume fraction of the (CuTl)-1223 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Ihara, K. Tanaka, Y. Tanaka, A. Iyo, N. Terada, M. Tokumoto, M. Ariyama, I. Hase, A. Sundaresan, N. Hamada, S. Miyashita, Physica C 341, 487 (2000)

    Article  ADS  Google Scholar 

  2. Z.Z. Sheng, A.M. Hermann, Nature 332, 55 (1988)

    Article  ADS  Google Scholar 

  3. H. Ihara, Physica C 364, 289 (2001)

    Article  ADS  Google Scholar 

  4. J. Plain, T. Puig, F. Sandiumenge, X. Obradors, J. Rabier, Phys. Rev. B 65, 104526 (2002)

    Article  ADS  Google Scholar 

  5. S. Patnaik, A. Gurevich, S.D. Bu, S.D. Kaushik, J. Choi, C.B. Eom, D.C. Larbalestier, Phys. Rev. B 70, 064503 (2004)

    Article  ADS  Google Scholar 

  6. R. Goswami, T.J. Haugan, P.N. Barnes, G. Spanos, R.L. Holtz, Phys. C 470, 318 (2010)

    Article  ADS  Google Scholar 

  7. V. Pillai, P. Kumar, M.J. Hou, P. Ayyub, D.O. Shah, Adv. Colloid Interface Sci. 55, 241 (1995)

    Article  Google Scholar 

  8. A. Jabbar, I. Qasim, K.M. Khan, Z. Ali, K. Nadeem, M. Mumtaz, J. Alloys Compd. 618, 110 (2015)

    Article  Google Scholar 

  9. I. Qasim, M. Waqee-ur-Rehman, M. Mumtaz, G. Hussain, K. Nadeem, N.A. Khan, J. Alloys Compd. 649, 320 (2015)

    Article  Google Scholar 

  10. W. Abdeen, N.H. Mohammed, R. Awad, S.A. Mahmoud, M. Hasebbo, J. Supercond. Nov. Magn. 26, 623 (2013)

    Article  Google Scholar 

  11. T.D. Dzhafarov, M. Altunbaş, A. Varilci, T. Küçükömeroglu, Mater. Lett. 25, 81 (1995)

    Article  Google Scholar 

  12. B. Zeimetz, S.X. Dou, H.K. Liu, Supercond. Sci. Technol. 9, 888 (1996)

    Article  ADS  Google Scholar 

  13. T.D. Dzhafarov, M. Altunbaş, A. Varilci, T. Küçükömeroğlu, S. Nezir, Solid State Commun. 99, 839 (1996)

    Article  ADS  Google Scholar 

  14. H. Najafpour, S.H.R. Shojaei, S.M. Shojaei, J. Supercond. Nov. Magn. 23, 487 (2010)

    Article  Google Scholar 

  15. M. Mumtaz, A.I. Bhatti, K. Nadeem, N.A. Khan, A. Saleem, S.T. Hussain, J. Low Temp. Phys. 170, 185 (2013)

    Article  ADS  Google Scholar 

  16. N.H. Mohammed, R. Awad, A.I. Abou-Aly, I.H. Ibrahim, M. Roumié, M. Rekaby, J. Supercond. Nov. Magn. 25, 1441 (2012)

    Article  Google Scholar 

  17. M.M. Elokr, R. Awad, Asmaa Abd El-Ghany, A. Abou Shama, A. Abd El-Wanis, J. Supercond. Nov. Magn. 24, 1345 (2011)

    Article  Google Scholar 

  18. H. Mizoguchi, W. Eng, P.M. Woodward, Inorg. Chem. 43, 1667 (2004)

    Article  Google Scholar 

  19. Y. Yuan, J. Lv, X. Jiang, Z. Li, T. Yu, Z. Zou, J. Ye, Appl. Phys. Lett. 91, 94107 (2007)

    Article  Google Scholar 

  20. G.A. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  21. C.V. Varanasi, P.N. Barnes, J. Burke, Supercond. Sci. Technol. 20, 1071 (2007)

    Article  ADS  Google Scholar 

  22. M.M.E. Barakat, Results Phys. 7, 1181 (2017)

    Article  ADS  Google Scholar 

  23. E. Swatsitang, A. Karaphun, S. Phokha, T. Putjuso, J. Sol Gel Sci. Technol. 77, 78 (2016)

    Article  Google Scholar 

  24. J.M.D. Coey, M. Venkateshan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

  25. K.H. Gao, Z.Q. Li, X.J. Liu, W. Song, H. Liu, E.Y. Jiang, Solid State Commun. 138, 175–178 (2006)

    Article  ADS  Google Scholar 

  26. K.K. James, A. Aravind, M.K. Jayaraj, Appl. Surf. Sci. 282, 121–125 (2013)

    Article  ADS  Google Scholar 

  27. A.S. Deepa, S. Vidya, P.C. Manu, Sam Solomon, Annamma John, J.K. Thomas, J. Alloys Compd. 509, 1830 (2011)

    Article  Google Scholar 

  28. I. Karaca, S. Celebi, A. Varilci, A.I. Malik, Supercond. Sci. Technol. 16, 100 (2003)

    Article  ADS  Google Scholar 

  29. H. Salamati, P. Kameli, Solid State Commun. 125, 407 (2003)

    Article  ADS  Google Scholar 

  30. V.P.S. Awana, S.K. Malik, Physica C 338, 197 (2000)

    Article  ADS  Google Scholar 

  31. M. Mumtaz, S. Naeem, K. Nadeem, F. Naeem, Abdul Jabbar, Y.R. Zheng, Nawazish A. Khan, M. Imran, Solid State Sci. 22, 21–26 (2013)

    Article  ADS  Google Scholar 

  32. M. Mumtaz, N.A. Khan, Supercond. Sci. Technol. 21, 65015 (2008)

    Article  Google Scholar 

  33. S.M. Ghahfarokhi, M.Z. Shoushtari, Physica B 405, 4643 (2010)

    Article  ADS  Google Scholar 

  34. M.T. Katona, S.W. Pierson, Physica C 270, 242 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed under the advising of Prof. Ramadan Awad in the materials Lab, Physics Department, Faculty of Science, Beirut Arab University, Debbieh campus, Lebanon. XRD, SEM, EDX, FTIR and resistivity measurements were measured in the superconductivity and metallic-glass lab, Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Srour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srour, A., Awad, R., Malaeb, W. et al. Physical Properties of \((\hbox {BaSnO}_{3})_\mathrm{x}/\hbox {Cu}_{0.5}\hbox {Tl}_{0.5}\hbox {Ba}_{2}\hbox {Ca}_{2}\hbox {Cu}_{3}\hbox {O}_{10{-}\delta }\) Superconductor Composite. J Low Temp Phys 189, 217–229 (2017). https://doi.org/10.1007/s10909-017-1806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1806-y

Keywords

Navigation