Skip to main content
Log in

Characterization and magnetic properties of BaSn1−x Fe x O3 nanoparticles prepared by a modified sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

BaSn1−x Fe x O3 (x = 0, 0.05, 0.075 and 0.1) nanoparticles were prepared by a modified sol–gel method. Phase, morphology and oxidation state of samples were characterized using X-ray diffraction (XRD), transmission electron microscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy and X-ray absorption near-edge spectroscopy. XRD results show the main reflections of the perovskite-type cubic structure for all powders calcined at 1050 °C for 3 h in air. X-ray absorption measurements indicate the substitution of Fe3+ ions on the Sn site of the BaSnO3 host. The field dependence of magnetization M–H curve measured at room temperature exhibits diamagnetic behavior for undoped sample, whereas Fe-doped samples show the clear M–H loops with saturation magnetization and coercive field in the order of 0.34–1.25 emu/g and 260 Oe, respectively. Ferromagnetic (FM) ordering is interpreted in terms of overlapping of polarons mediated through oxygen vacancy defects based on the bound magnetic polaron (BMP) model. Observed FM data are fitted well with the BMP model involving localized carriers and magnetic cations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wolf SA, Awschalom DD, Buhrman RA, Daughton JM, von Molnár S, Roukes ML, Chtchelkanova AY, Treger DM (2001) Spintronics: a spin-based electronics vision for the future. Science 294:1488–1495

    Article  Google Scholar 

  2. Prinz GA (1998) Magnetoelectronics. Science 282:1660–1663

    Article  Google Scholar 

  3. Fukumura T, Toyosaki H, Yamada Y (2005) Magnetic oxide semiconductors. Semicond Sci Technol 20:S103–S111

    Article  Google Scholar 

  4. Wang YQ, Yuan SL, Liu L, Li P, Lan XX, Tian ZM, He JH, Yin SY (2008) Ferromagnetism in Fe-doped ZnO bulk samples. J Magn Magn Mater 320:1423–1426

    Article  Google Scholar 

  5. Phokha S, Pinitsoontorn S, Maensiri S (2012) Room-temperature ferromagnetism in Co-doped CeO2 nanospheres prepared by the polyvinylpyrrolidone-assisted hydrothermal method. J Appl Phys 112:113904

    Article  Google Scholar 

  6. Das SK, Mishra RN, Roui BK (2014) Magnetic and ferroelectric properties of Ni doped BaTiO3. Solid State Commun 191:19–24

    Article  Google Scholar 

  7. Romama EV, Yang SM, Jung R, Jung MH, Lee BW, Jung CU (2013) Ferroelectric and magnetic properties of Fe-doped BaTiO3 thin films grown by the pulsed laser deposition. J Appl Phys 113:187219

    Article  Google Scholar 

  8. Ren Z, Xu G, Wei X, Liu Y, Hou X, Du P, Weng W, Shen G, Han G (2007) Room-temperature ferromagnetism in Fe-doped PbTiO3 nanocrystals. Appl Phys Lett 91:063106

    Article  Google Scholar 

  9. Maensiri S, Wongsaprom K, Swatsitang E (2007) Fe-doped La0.5Sr0.5TiO3—nanoparticles: a diluted magnetic oxide system. J Appl Phys 102:076110

    Article  Google Scholar 

  10. Kim DH, Aimon NM, Bi L, Dionne GF, Ross CA (2012) The role of deposition conditions on the structure and magnetic properties of SrTi1−x Fe x O3 films. J Appl Phys 111:07A918

    Google Scholar 

  11. Balamurugan K, Kumar NH, Chelvane JA, Santhosh PN (2009) Room temperature ferromagnetism in Fe-doped BaSnO3. J Alloys Compd 472:9–12

    Article  Google Scholar 

  12. Roh KS, Kim MG, Ryu KS, Yo CH (1996) Nonmetallic spin glass behavior by spin frustration at low temperature in nonstoichiometric BaSn1−x Fe x O3-y system. Solid State Commun 100:565–569

    Article  Google Scholar 

  13. Balamurugan K, Kumar NH, Chelvane JA, Santhosh PN (2012) Effect of W co-doping on the optical, magnetic and electrical properties of Fe-doped BaSnO3. Phys B 407:2519–2523

    Article  Google Scholar 

  14. Balamurugan K, Kumar NH, Ramachandran B, Ramachandra Rao MS, Chelvane JA, Santhosh PN (2009) Magnetic and optical properties of Mn-doped BaSnO3. Solid State Commun 149:884–887

    Article  Google Scholar 

  15. Smith MG, Goodenough JB, Manthiram A, Taylor RD, Peng W, Kimbai CW (1992) Tin and antimony valence states in BaSn0.85Sb0.15O3−δ. J Solid State Chem 98:181–186

    Article  Google Scholar 

  16. Mizoguchi H, Woodward PM, Park CH, Keszler DA (2004) Strong near-infrared luminescence in BaSnO3. J Am Chem Soc 126:9796–9800

    Article  Google Scholar 

  17. Ostrick B, Fleischer M, Lampe U, Meixner H (1997) Preparation of stoichiometric barium stannate thin films: hall measurements and gas sensitivities. Sens Acuators B 44:601–606

    Article  Google Scholar 

  18. Borse PH, Joshi UA, Ji SM, Jang JS, Lee JS, Jeong ED, Kim HG (2007) Band gap tuning of lead-substituted BaSnO3 for visible light photocatalysis. Appl Phys Lett 90:034103

    Article  Google Scholar 

  19. Pal B, Giri PK (2011) Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles. J Nanosci Nanotechnol 11:9167–9174

    Article  Google Scholar 

  20. Santara B, Pal B, Giri PK (2011) Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J Appl Phys 110:114322

    Article  Google Scholar 

  21. Bandyopadhyay A, Sutradhar S, Sarkar BJ, Deb AK, Chakrabarti PK (2012) Vacancy mediated room temperature ferromagnetism in Co-doped DyO. Appl Phys Lett 100:252411

    Article  Google Scholar 

  22. Chiorescu C, Cochin JL, Neumeier JJ (2007) Impurity conduction and magnetic polarons in antiferromagnetic oxides. Phys Rev B 76:020404(R)

    Article  Google Scholar 

  23. Coey JMD, Venkateshan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4:173–179

    Article  Google Scholar 

  24. Srinet G, Kumar R, Sajal V (2013) Structural, optical, vibrational, and magnetic properties of sol–gel derived Ni doped ZnO nanoparticles. J Appl Phys 114:033912

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Synchrotron Light Research Institute (BL5.2) (Public Organization), Nakhon Ratchasima, Thailand, for XANES measurement. This work was financially supported by Rajamangala University of Technology Rattanakosin Wang Klai Kangwon Campus, Thailand (Grant A38/2558) and the Integrated Nanotechnology Research Center (INRC), Department of Physics, Faculty of Science, Khon Kaen University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanin Putjuso.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swatsitang, E., Karaphun, A., Phokha, S. et al. Characterization and magnetic properties of BaSn1−x Fe x O3 nanoparticles prepared by a modified sol–gel method. J Sol-Gel Sci Technol 77, 78–84 (2016). https://doi.org/10.1007/s10971-015-3831-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3831-0

Keywords

Navigation