Skip to main content
Log in

Study of CuO Nano-particles/CuTl-1223 Superconductor Composite

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Synthesis and characterization of (CuO) x /Cu0.5Tl0.5Ba2Ca2Cu3O10−δ ; {(CuO) x /CuTl-1223} composites with x=0 %, 10 %, 15 % and 20 % have been reported. The fluctuations induced conductivity (FIC) analysis of (CuO) x /CuTl-1223 composite has been carried out using Aslamazov-Larkin (AL) and Lawrence-Doniach (LD) models in the temperature regime well above the critical temperature (T>T c ). The electrical resistivity versus temperature curves of as-prepared and oxygen post-annealed (CuO) x /CuTl-1223 composite were fitted by using above mentioned models to extract the microscopic parameters such as zero temperature coherence length along c-axis{ξ c (0)}, inter-layer coupling (J), dimensional critical exponent (λ) and inter-grain coupling constant (α) etc. It has been observed that the cross-over temperature (T o ) fits very well the two-dimensional (2D) and three-dimensional (3D) AL equations and shifts towards the lower temperature regime with the enhanced weight percentage of CuO nano-particles. The shifting of AL 3D region to higher temperature after oxygen post-annealing indicates the restoration of oxygen and optimization of charge carriers in conducting CuO2 planes. The gradual decrease in the value of inter-grain coupling constant (α) with the increase of CuO nano-particles content reflects an improvement in the inter-grain coupling resulting into an increase in the coherence length (ξ c ) along the c-axis. Almost all superconductivity parameters have been improved after oxygen post-annealing. The suppression of superconductivity parameters in the composite with x=20 % limits the optimum doping level of CuO nano-particles in (CuO) x /CuTl-1223 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. H. Ihara, K. Tokiwa, H. Ozawa, M. Hirabayashi, A. Negishi, H. Matuhata, Y.S. Song, Jpn. J. Appl. Phys. 33, L503 (1994)

    Article  ADS  Google Scholar 

  2. H. Ihara, Physica C 364–365, 289 (2001)

    Article  Google Scholar 

  3. Z.Z. Sheng, A.M. Hermann, Nature 332, 55 (1988)

    Article  ADS  Google Scholar 

  4. Z.Z. Sheng, A.M. Hermann, A.E. Ali, C. Almasan, J. Estrada, T. Datta, R.J. Matson, Phys. Rev. Lett. 60, 937 (1988)

    Article  ADS  Google Scholar 

  5. Z.Z. Sheng, A.M. Hermann, Nature 332, 138 (1988)

    Article  ADS  Google Scholar 

  6. G. Malandrino, D.S. Richeson, T.J. Marks, D.C. De Groot, J.L. Schindler, C.R. Kannewurf, Appl. Phys. Lett. 58, 182 (1991)

    Article  ADS  Google Scholar 

  7. M.L. Chu, H.L. Chang, C. Wang, J.Y. Juang, T.M. Uen, Y.S. Gou, Appl. Phys. Lett. 59, 1123 (1991)

    Article  ADS  Google Scholar 

  8. W.L. Oslon, M.M. Eddy, T.W. James, R.B. Hammond, G. Gruner, L. Drabeck, Appl. Phys. Lett. 55, 188 (1989)

    Article  ADS  Google Scholar 

  9. M. Kikuchi, T. Kajitani, T. Suzuki, S. Nakajima, K. Hiraga, N. Kobayashi, H. Iwasaki, Y. Syono, Y. Muto, Jpn. J. Appl. Phys. 28, L382 (1989)

    Article  ADS  Google Scholar 

  10. S.S.P. Parkin, V.Y. Lee, E.M. Engler, A.I. Nazzal, T.C. Huang, G. Gormau, R. Savoy, R. Beyer, Phys. Rev. Lett. 60, 2539 (1988)

    Article  ADS  Google Scholar 

  11. I.K. Schuller, J.D. Jorgensen, Mater. Res. Bull. XIV, 27 (1989)

    Google Scholar 

  12. A.W. Sleight, M.A. Subramanian, C.C. Torardi, Mater. Res. Bull. XIV, 45 (1989)

    Google Scholar 

  13. J.B. Parise, J. Gopalkrishnan, M.A. Subramanian, A.W. Sleight, J. Solid State Chem. 76, 432 (1988)

    Article  ADS  Google Scholar 

  14. Y. Tang, B. Lin, D. Zhou, W. Zhu, F. Chen, N. Li, K. Chen, G. Lu, Mod. Phys. Lett. B 3, 853 (1989)

    Article  Google Scholar 

  15. A. Sundaresan, H. Asada, A. Crisan, J.C. Nie, H. Kito, A. Iyo, Y. Tanaka, M. Kusunoki, S. Ohshima, IEEE Trans. Appl. Supercond. 13, 2913 (2003)

    Article  Google Scholar 

  16. J.Y. Juang, J.H. Horng, S.P. Chen, C.M. Fu, K.H. Wu, T.M. Uen, Y.S. Gou, Appl. Phys. Lett. 60, 885 (1995)

    Article  ADS  Google Scholar 

  17. A. Sundaresan, H. Asada, A. Crisan, J.C. Nie, H. Kito, A. Iyo, T. Tanaka, M. Kusunoki, S. Oshima, Physica C 388, 473 (2003)

    Article  ADS  Google Scholar 

  18. D.J. Miller, J.G. Hu, J.D. Hettinger, K.E. Gray, J.E. Tkaczyk, J. Deluca, P.L. Karas, J.A. Sutliff, M.F. Garauskas, Appl. Phys. Lett. 63, 556 (1993)

    Article  ADS  Google Scholar 

  19. A. Iyo, Y. Ishiura, Y. Tanaka, P. Badica, K. Tokiwa, T. Watanabe, H. Ihara, Physica C 370, 205 (2002)

    Article  ADS  Google Scholar 

  20. W. Mexner, J. Hoffmann, S. Heede, K. Heinemann, H.C. Freyhardt, F. Ladenberger, E. Schwarzmann, Z. Phys. B 101, 181 (1996)

    Article  ADS  Google Scholar 

  21. D.N. Zheng, J.D. Johnson, A.R. Jones, A.M. Campbell, W.Y. Liang, T. Doi, M. Okada, K. Higashyama, J. Appl. Phys. 77, 5287 (1995)

    Article  ADS  Google Scholar 

  22. R.T. Liu, S.L. Yan, L. Fang, M. He, Supercond. Sci. Technol. 14, 948 (2001)

    Article  ADS  Google Scholar 

  23. R.S. Liu, D.N. Zheng, J.W. Loram, K.A. Mirza, A.M. Campbell, P.P. Edwards, Appl. Phys. Lett. 60, 1019 (1992)

    Article  ADS  Google Scholar 

  24. S.H. Yun, J.Z. Wu, Appl. Phys. Lett. 68, 862 (1996)

    Article  ADS  Google Scholar 

  25. N.A. Khan, M. Mumtaz, A.A. Khurram, P. Kameli, Physica C 468, 233 (2008)

    Article  ADS  Google Scholar 

  26. N.A. Khan, M. Mumtaz, K. Sabeeh, M.I.A. Khan, M. Ahmed, Physica C 407, 103 (2004)

    Article  ADS  Google Scholar 

  27. K. Semba, A. Matsuda, T. Ishii, Phys. Rev. B 49, 10043 (1996).

    Article  ADS  Google Scholar 

  28. M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Y.Q. Wang, C.W. Chu, Phys. Rev. Lett. 58, 908 (1987)

    Article  ADS  Google Scholar 

  29. K. Heine, J. Tenbrink, M. Thoner, Appl. Phys. Lett. 55, 2441 (1989)

    Article  ADS  Google Scholar 

  30. J.Y. Yuang, J.H. Horng, S.P. Chen, C.M. Fu, K.H. Wu, T.M. Uen, Y.S. Gou, Appl. Phys. Lett. 66, 885 (1995)

    Article  ADS  Google Scholar 

  31. M. Mumtaz, N.A. Khan, S. Khan, J. Appl. Phys. 107, 103905 (2010)

    Article  ADS  Google Scholar 

  32. M. Mumtaz, N.A. Khan, E.U. Khan, Phys. C 470, 428 (2010)

    Article  ADS  Google Scholar 

  33. N.A. Khan, M. Mumtaz, J. Low Temp. Phys. 151, 1221 (2008)

    Article  ADS  Google Scholar 

  34. C. Wang, Z. Gao, L. Wang, Y. Qi, D. Wang, C. Yao, Z. Zhang, Y. Ma, Supercond. Sci. Technol. 23, 055002 (2010)

    Article  ADS  Google Scholar 

  35. N.L. Wang, M. Ziaei, B.P. Clayman, G.D. Gu, Physica C 341, 2227 (2000)

    Article  Google Scholar 

  36. D. Shi, M.S. Boley, U. Whelp, J.G. Chen, Y. Liao, Phys. Rev. B 40, 5255 (1989)

    Article  ADS  Google Scholar 

  37. H. Shakeripour, M. Akhavan, Supercond. Sci. Technol. 14, 234 (2001)

    Article  ADS  Google Scholar 

  38. R. Awad, J. Supercond. Nov. Magn. 21, 461 (2008)

    Article  Google Scholar 

  39. H. Baqiah, S.H.M. Adam, S. Chen, S. Ravandi, M. Faisal, M. Kamarulzaman, M. Hanif, Solid State Sci. Technol. 17, 81 (2009)

    Google Scholar 

  40. S. Dou, S. Soltania, Y. Zhao, E. Getin, Z. Chen, O. Shcherbakova, J. Horvat, J. Supercond. Sci. Technol. 18, 710 (2005)

    Article  ADS  Google Scholar 

  41. M. Eloker, R. Awad, A.A.E. Ghany, A.A. Shama, A.A. Elwanis, J. Supercond. Nov. Magn. 24, 1345 (2011)

    Article  Google Scholar 

  42. N. Mohamed, A. Abou-Aly, I. Ibrahim, R. Awad, M. Rkaby, J. Alloys Compd. 486, 733 (2009)

    Article  Google Scholar 

  43. L. Aslamazov, A. Larkin, Sov. Phys., Solid State 10, 875 (1968)

    Google Scholar 

  44. W. Lawrence, S. Doniach, Sov. Phys., Solid State 10, 361 (1971)

    Google Scholar 

  45. C. Passos, M. Orland, O. Passamai, E. de Mello, H. Correa, L.G. Martinez, Phys. Rev. B 74, 094514 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mumtaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mumtaz, M., Bhatti, A.I., Nadeem, K. et al. Study of CuO Nano-particles/CuTl-1223 Superconductor Composite. J Low Temp Phys 170, 185–204 (2013). https://doi.org/10.1007/s10909-012-0741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0741-1

Keywords

Navigation