Skip to main content
Log in

Temperature Can Enhance Non-Markovianity in Dipolar Bose–Einstein Condensate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study temperature effects on non-Markovian dynamics in a model of an atomic impurity qubit immersed in a quasi-two-dimensional dipolar Bose–Einstein condensate , which can be described as a pure dephasing spin-boson model. We use the measure proposed by Breuer et al. (Phys Rev Lett 103:210401, 2009) to characterize non-Markovianity of the quantum process and find for larger relative dipole–dipole interaction, properly low temperature can induce the non-Markovianity enhancement. We give an explanation of the non-Markovianity enhancement that raising temperature can increase the sharpness of the temperature-dependent environmental spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

    Book  MATH  Google Scholar 

  2. H.P. Breuer, E.M. Laine, J. Piilo, Phys. Rev. Lett 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. A. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  4. X.M. Lu, X.G. Wang, C.P. Sun, Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  5. H.S. Zeng, N. Tang, Y.P. Zheng, G.Y. Wang, Phys. Rev. A 84, 032118 (2011)

    Article  ADS  Google Scholar 

  6. Z. He, J. Zou, L. Li, B. Shao, Phys. Rev. A 83, 012108 (2011)

    Article  ADS  Google Scholar 

  7. M.M. Ali, P.Y. Lo, M.W.Y. Tu, W.M. Zhang, Phys. Rev. A 92, 062306 (2015)

    Article  ADS  Google Scholar 

  8. H.P. Breuer, E.M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  9. A. Smirne, S. Cialdi, G. Anelli, M.G.A. Paris, B. Vacchini, Phys. Rev. A 88, 012108 (2013)

    Article  ADS  Google Scholar 

  10. M. Gessner, M. Ramm, H. Häfner, A. Buchleitner, H.P. Breuer, Europhys. Lett. 107, 40005 (2014)

    Article  ADS  Google Scholar 

  11. A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  12. R. Vasile, S. Olivares, M.G.A. Paris, S. Maniscalco, Phys. Rev. A 83, 042321 (2011)

    Article  ADS  Google Scholar 

  13. P. Rebentrost, A.A. Guzik, J. Chem. Phys. 134, 101103 (2011)

    Article  ADS  Google Scholar 

  14. S.F. Huelga, A. Rivas, M.B. Plenio, Phys. Rev. Lett. 108, 160402 (2012)

    Article  ADS  Google Scholar 

  15. F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009)

    Article  Google Scholar 

  16. Y. Matsuzaki, S.C. Benjamin, J. Fitzsimons, Phys. Rev. A 84, 012103 (2011)

    Article  ADS  Google Scholar 

  17. E.M. Laine, H.P. Breuer, J. Piilo, Sci. Rep. 4, 4620 (2014)

    Article  Google Scholar 

  18. B.H. Liu et al., Nat. Phys. 7, 931 (2011)

    Article  Google Scholar 

  19. J.S. Tang et al., Eur. Phys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

  20. A. Chiuri et al., Sci. Rep. 2, 968 (2012)

    Article  Google Scholar 

  21. J.S. Xu et al., Nat. Commun. 4, 2851 (2013)

    Google Scholar 

  22. B.H. Liu et al., Sci. Rep. 3, 1781 (2013)

    Article  Google Scholar 

  23. F. Fanchini et al., Phys. Rev. Lett. 112, 210402 (2014)

    Article  ADS  Google Scholar 

  24. J. Jin et al., Phys. Rev. A 91, 012122 (2015)

    Article  ADS  Google Scholar 

  25. N.K. Bernardes et al., Sci. Rep. 5, 17502 (2015)

    Article  Google Scholar 

  26. P. Haikka et al., Phys. Rev. A 84, 031602(R) (2011)

    Article  ADS  Google Scholar 

  27. P. Haikka et al., Phys. Rev. A 87, 012127 (2013)

    Article  ADS  Google Scholar 

  28. P. Haikka et al., Phys. Rev. A 87, 010103(R) (2013)

    Article  ADS  Google Scholar 

  29. P. Haikka et al., Phys. Scr. T 151, 014060 (2012)

    Article  ADS  Google Scholar 

  30. S. Mcendoo et al., Eur.Phys. Lett. 101, 60005 (2013)

    Article  ADS  Google Scholar 

  31. V. Pastukhov, J. Low Temp. Phys. 186, 148 (2017)

    Article  ADS  Google Scholar 

  32. J. Li, Y. Qiao, J. Low Temp. Phys. 177, 165 (2014)

    Article  ADS  Google Scholar 

  33. M. Pizzardo, G. Mazzarella, L. Salasnich, J. Low Temp. Phys. 185, 59 (2016)

    Article  ADS  Google Scholar 

  34. B. Gonzlez-Fernndez, A. Camacho, J. Low Temp. Phys. 173, 343 (2013)

    Article  ADS  Google Scholar 

  35. A. Klein, M. Fleischhauer, Phys. Rev. A 71, 033605 (2005)

    Article  ADS  Google Scholar 

  36. A. Recati, P.O. Fedichev, W. Zwerger, J. von Delft, P. Zoller, Phys. Rev. Lett. 94, 040404 (2005)

    Article  ADS  Google Scholar 

  37. H.T. Ng, S. Bose, Phys. Rev. A 78, 023610 (2008)

    Article  ADS  Google Scholar 

  38. M. Bruderer, D. Jaksch, New J. Phys. 8, 87 (2006)

    Article  ADS  Google Scholar 

  39. M.A. Cirone, G. De Chiara, G.M. Palma, A. Recati, New J. Phys. 11, 103055 (2009)

    Article  ADS  Google Scholar 

  40. Ji-Bing Yuan, Hai-Jun Xing, Le-Man Kuang, Su Yi, Phys. Rev. A 95, 033610 (2017)

    Article  ADS  Google Scholar 

  41. M. Lu et al., Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  42. M. Lu et al., Phys. Rev. Lett. 108, 215301 (2012)

    Article  ADS  Google Scholar 

  43. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11547258 and 11647129, by the Scientific Research Fund of Hunan Provincial Education Department of China under Grants Nos. 16B036 and 15A028, by Hunan Provincial Natural Science Foundation of China under Grants Nos. 2017JJ3005, 2016JJ2009 and 2015JJ3029, by the Science and Technology Plan Project of Hunan Province Grant No. 2016TP1020, by Science Foundation of Hengyang Normal University of China under Grants Nos. 15B21 and 14B38 and by the Hunan Provincial Applied Basic Research Base of Optoelectronic Information Technology Grant No. GD16K05.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Bing Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, SQ., Yuan, JB., Wang, XW. et al. Temperature Can Enhance Non-Markovianity in Dipolar Bose–Einstein Condensate. J Low Temp Phys 189, 147–157 (2017). https://doi.org/10.1007/s10909-017-1797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1797-8

Keywords

Navigation