Skip to main content
Log in

Properties of Two-Component Bose–Einstein Condensates with Monopolar Interaction

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study two-component Bose–Einstein condensates (BECs) with electromagnetically induced attractive monopolar interaction, by means of the Dirac–Frenkel–McLachlan variational principle. The effectiveness of external trap potential, inter-component \(s\)-wave scattering, monopolar interaction, and particle numbers on the density of BECs is investigated. It is shown that the trap potential dramatically affects density profiles compared to the other three ingredients. Atoms with smaller intra-component \(s\)-wave scattering length will be squeezed out when monopolar interaction or particle numbers are small, whereas the atoms in the other component are pushed out instead when either parameter is large enough. This is in contrast to modulation of inter-component \(s\)-wave scattering length, which can not exchange the relative location of different components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  2. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  3. A. Griesmaier, J. Stuhler, T. Koch, M. Fattori, T. Pfau, S. Giovanazzi, Comparing contact and dipolar interactions in a Bose–Einstein condensate. Phys. Rev. Lett. 97, 250402 (2006)

    Article  ADS  Google Scholar 

  4. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009)

    Article  ADS  Google Scholar 

  5. D. O’Dell, S. Giovanazzi, G. Kurizki, V.M. Akulin, Bose–Einstein condensates with \(1/r\) interatomic attraction: electromagnetically induced “gravity”. Phys. Rev. Lett. 84, 5687 (2000)

    Article  ADS  Google Scholar 

  6. S. Rau, J. Main, P. Köberle, G. Wunner, Pitchfork bifurcations in blood-cell-shaped dipolar Bose–Einstein condensates. Phys. Rev. A 81, 031605(R) (2010)

    Article  ADS  Google Scholar 

  7. H. Cartarius, T. Fabčič, J. Main, G. Wunner, Dynamics and stability of Bose–Einstein condensates with attractive \(1/r\) interaction. Phys. Rev. A 78, 013615 (2008)

    Article  ADS  Google Scholar 

  8. I. Papadopoulos, P. Wagner, G. Wunner, J. Main, Bose–Einstein condensates with attractive \(1/r\) interaction: the case of self-trapping. Phys. Rev. A 76, 053604 (2007)

    Article  ADS  Google Scholar 

  9. T. Ho, V. Shenoy, Binary mixtures of bose condensates of alkali atoms. Phys. Rev. Lett. 77, 3276 (1996)

    Article  ADS  Google Scholar 

  10. H. Pu, N. Bigelow, Properties of two-species bose condensates. Phys. Rev. Lett. 80, 1130 (1998)

    Article  ADS  Google Scholar 

  11. V. Schweikhard, I. Coddington, P. Engels, S. Tung, E.A. Cornell, Vortex-lattice dynamics in rotating spinor Bose–Einstein condensates. Phys. Rev. Lett. 93, 210403 (2004)

    Article  ADS  Google Scholar 

  12. K.M. Mertes, J.W. Merrill, R. Carretero-González, D.J. Frantzeskakis, P.G. Kevrekidis, D.S. Hall, Nonequilibrium dynamics and superfluid ring excitations in binary Bose–Einstein condensates. Phys. Rev. A 99, 190402 (2007)

    Google Scholar 

  13. S.B. Papp, J.M. Pino, C.E. Wieman, Tunable miscibility in a dual-species Bose–Einstein condensate. J. Chem. Phys. 101, 040402 (2008)

    Google Scholar 

  14. Kui-Tian Xi, Jinbin Li, Da-Ning Shi, Phase separation of a two-component dipolar Bose–Einstein condensate in the quasi-one-dimensional and quasi-two-dimensional regime. Phys. Rev. A 84, 013619 (2011)

    Article  ADS  Google Scholar 

  15. H. Saito, Y. Kawaguchi, M. Ueda, Ferrofluidity in a two-component dipolar Bose–Einstein condensate. Phys. Rev. Lett. 102, 230403 (2009)

    Article  ADS  Google Scholar 

  16. G. Gligorić, A. Maluckov, M. Stepić, L. Had\(\breve{z}\)ievski, B. Malomed, Transition to miscibility in linearly coupled binary dipolar Bose–Einstein condensates. Phys. Rev. A 82, 033624 (2010)

  17. S. Ronen, D.C.E. Bortolotti, J.L. Bohn, Bogoliubov modes of a dipolar condensate in a cylindrical trap. Phys. Rev. A 74, 013623 (2006)

    Article  ADS  Google Scholar 

  18. E.J. Heller, Classical S-matrix limit of wave packet dynamics. J. Chem. Phys. 65, 4979 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. F. Gaussians, A very simple semiclassical approximation. J. Chem. Phys. 75, 2923 (1981)

    Article  MathSciNet  Google Scholar 

  20. P. Dirac, Note on exchange phenomena in the Thomas Atom. Math. Proc. Cambridge Philos. Soc. 26, 376 (1930)

    Article  MATH  ADS  Google Scholar 

  21. A.D. McLachlan, A variational solution of the time-dependent Schrodinger equation. Mol. Phys. 8, 39 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  22. M.J.D. Powell, A hybrid method for nonlinear equations, in Numerical methods for nonlinear algebraic equations, ed. by P. Rabinowitz (Gordon and Breach, London, 1970), pp. 87–114

    Google Scholar 

  23. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes in FORTRAN, 2nd edn. (Cambridge University Press, Cambridge, 1992), pp. 387–448

    MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (NSFC, Grant No.11104143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Qiao, Y. Properties of Two-Component Bose–Einstein Condensates with Monopolar Interaction. J Low Temp Phys 177, 165–177 (2014). https://doi.org/10.1007/s10909-014-1207-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1207-4

Keywords

Navigation