Skip to main content
Log in

Infrared Behavior of Dipolar Bose Systems at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We rigorously discuss the infrared behavior of the uniform three-dimensional dipolar Bose systems. In particular, it is shown that low-temperature physics of the system is controlled by two parameters, namely isothermal compressibility and intensity of the dipole–dipole interaction. By using a hydrodynamic approach, we calculate the spectrum and damping of low-lying excitations and analyze the infrared behavior of the one-particle Green’s function. The low-temperature corrections to the anisotropic superfluid density as well as condensate depletion are found. Additionally, we derive equations of the two-fluid hydrodynamics for dipolar Bose systems and calculate velocities of first and second sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Phys. Rev. Lett. 94, 160401 (2005)

    Article  ADS  Google Scholar 

  2. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  3. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 108, 210401 (2012)

    Article  ADS  Google Scholar 

  4. M.A. Baranov, Phys. Rep. 464, 71 (2008)

    Article  ADS  Google Scholar 

  5. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)

    Article  ADS  Google Scholar 

  6. M.A. Baranov, M. Dalmonte, G. Pupillo, P. Zoller, Chem. Rev. 112, 5012 (2012)

    Article  Google Scholar 

  7. R.M. Wilson, S. Ronen, J.L. Bohn, Phys. Rev. Lett. 104, 094501 (2010)

    Article  ADS  Google Scholar 

  8. P. Pedri, L. Santos, Phys. Rev. Lett. 95, 200404 (2005)

    Article  ADS  Google Scholar 

  9. I. Tikhonenkov, B.A. Malomed, A. Vardi, Phys. Rev. Lett. 100, 090406 (2008)

    Article  ADS  Google Scholar 

  10. R.N. Bisset, R.M. Wilson, D. Baillie, P.B. Blakie. arXiv preprint. arXiv:1605.04964

  11. D.H.J. O’Dell, S. Giovanazzi, G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003)

    Article  Google Scholar 

  12. L. Santos, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003)

    Article  ADS  Google Scholar 

  13. M. Jona-Lasinio, K. Lakomy, L. Santos, Phys. Rev. A 88, 013619 (2013)

    Article  ADS  Google Scholar 

  14. M. Jona-Lasinio, K. Lakomy, L. Santos, Phys. Rev. A 88, 049905(E) (2013)

    Article  ADS  Google Scholar 

  15. R.N. Bisset, P.B. Blakie, Phys. Rev. Lett. 110, 265302 (2013)

    Article  ADS  Google Scholar 

  16. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier, T. Pfau, Nat. Phys. 4, 218 (2008)

    Article  Google Scholar 

  17. T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, T. Pfau, Nature 448, 672 (2007)

    Article  ADS  Google Scholar 

  18. T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, M. Ueda, Phys. Rev. Lett. 101, 080401 (2008)

    Article  ADS  Google Scholar 

  19. K. Góral, K. Rzażewski, T. Pfau, Phys. Rev. A 61, 051601(R) (2000)

    Article  ADS  Google Scholar 

  20. J.-P. Martikainen, M. Mackie, K.-A. Suominen, Phys. Rev. A 64, 037601 (2001)

    Article  ADS  Google Scholar 

  21. C. Eberlein, S. Giovanazzi, D.H.J. O’Dell, Phys. Rev. A 71, 033618 (2005)

    Article  ADS  Google Scholar 

  22. H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-Barbut, T. Pfau, Nature 530, 194 (2016)

    Article  ADS  Google Scholar 

  23. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, T. Pfau, Phys. Rev. Lett. 116, 215301 (2016)

    Article  ADS  Google Scholar 

  24. R. Schützhold, M. Uhlmann, Y. Xu, U.R. Fischer, Int. J. Mod. Phys. B 20, 3555 (2006)

    Article  ADS  Google Scholar 

  25. A.R.P. Lima, A. Pelster, Phys. Rev. A 84, 041604(R) (2011)

    Article  ADS  Google Scholar 

  26. A.R.P. Lima, A. Pelster, Phys. Rev. A 86, 063609 (2012)

    Article  ADS  Google Scholar 

  27. F. Wächtler, L. Santos, Phys. Rev. A 93, 061603(R) (2016)

    Article  ADS  Google Scholar 

  28. H. Saito, J. Phys. Soc. Jpn. 85, 053001 (2016)

    Article  ADS  Google Scholar 

  29. R.N. Bisset, P.B. Blakie, Phys. Rev. A 92, 061603(R) (2015)

    Article  ADS  Google Scholar 

  30. K.-T. Xi, H. Saito, Phys. Rev. A 93, 011604(R) (2016)

    Article  ADS  Google Scholar 

  31. R.N. Bisset, D. Baillie, P.B. Blakie, Phys. Rev. A 83, 061602(R) (2011)

    Article  ADS  Google Scholar 

  32. R.N. Bisset, D. Baillie, P.B. Blakie, Phys. Rev. A 86, 033609 (2012)

    Article  ADS  Google Scholar 

  33. A.A. Nepomnyashchy, Y.A. Nepomnyashchy, Pis’ma Zh. Exp. Teor. Fiz. 21, 3 (1975)

    Google Scholar 

  34. A.A. Nepomnyashchy, Y.A. Nepomnyashchy, Sov. Phys. JETP Lett. 21, 1 (1975)

    ADS  Google Scholar 

  35. Y.A. Nepomnyashchy, A.A. Nepomnyashchy, Zh Exp, Teor. Fiz. 75, 976 (1978)

    Google Scholar 

  36. Y.A. Nepomnyashchy, A.A. Nepomnyashchy, Sov. Phys. JETP 48, 493 (1978)

    ADS  Google Scholar 

  37. Ch. Mora, Y. Castin, Phys. Rev. A 67, 053615 (2003)

    Article  ADS  Google Scholar 

  38. N.N. Bogoliubov, D.N. Zubarev, Zh. Exp. Teor. Fiz. 28, 129 (1955)

    Google Scholar 

  39. N.N. Bogoliubov, D.N. Zubarev, Sov. Phys. JETP 1, 83 (1955)

    Google Scholar 

  40. G.S. Grest, A.K. Rajagopal, Phys. Rev. A 10, 1395 (1974)

    Article  ADS  Google Scholar 

  41. I.A. Vakarchuk, I.R. Yukhnovskii, Theor. Math. Phys. 42, 73 (1980)

    Article  Google Scholar 

  42. I.A. Vakarchuk, P.A. Glushak, Theor. Math. Phys. 75, 399 (1988)

    Article  Google Scholar 

  43. V.N. Popov, Functional Integrals and Collective Excitations (Cambridge University Press, Cambridge, 1987)

    MATH  Google Scholar 

  44. J.H. Wilson, V. Galitski, Phys. Rev. Lett. 106, 110401 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  45. V.I. Yukalov, E.P. Yukalova, Laser Phys. 26, 045501 (2016)

    Article  ADS  Google Scholar 

  46. V. Pastukhov, Ann. Phys. 372, 149 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  47. B.I. Halperin, P.C. Hohenberg, Phys. Rev. 188, 898 (1969)

    Article  ADS  Google Scholar 

  48. A.L. Chernyshev, M.E. Zhitomirsky, Phys. Rev. B 79, 174402 (2009)

    Article  ADS  Google Scholar 

  49. N.M. Hugenholtz, D. Pines, Phys. Rev. 116, 489 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  50. C. Krumnow, A. Pelster, Phys. Rev. A 84, 021608(R) (2011)

    Article  ADS  Google Scholar 

  51. B. Nikolic, A. Balaz, A. Pelster, Phys. Rev. A 88, 013624 (2013)

    Article  ADS  Google Scholar 

  52. M. Ghabour, A. Pelster, Phys. Rev. A 90, 063636 (2014)

    Article  ADS  Google Scholar 

  53. A. Boudjemâa, Phys. Rev. A 91, 053619 (2015)

    Article  ADS  Google Scholar 

  54. L. Landau, J. Phys. (USSR) 5, 71 (1941)

    Google Scholar 

  55. S.V. Maleev, Theor. Math. Phys. 4, 694 (1970)

    Article  Google Scholar 

  56. S.T. Beliaev, Zh Exp, Teor. Fiz. 34, 433 (1958)

    Google Scholar 

  57. S.T. Beliaev, Sov. Phys. JETP 7, 299 (1958)

    MathSciNet  Google Scholar 

  58. V. Pastukhov, J. Phys. A Math. Theor. 48, 405002 (2015)

    Article  MathSciNet  Google Scholar 

  59. P.C. Hohenberg, P.C. Martin, Ann. Phys. (N.Y.) 34, 291 (1965)

    Article  ADS  Google Scholar 

  60. N.N. Bogoliubov, J. Phys. (USSR) 11, 23 (1947)

    Google Scholar 

  61. S.T. Beliaev, Zh Exp, Teor. Fiz. 34, 417 (1958)

    Google Scholar 

  62. S.T. Beliaev, Sov. Phys. JETP 7, 289 (1958)

    MathSciNet  Google Scholar 

  63. J. Gavoret, P. Nozières, Ann. Phys. (N.Y.) 28, 349 (1964)

    Article  ADS  Google Scholar 

  64. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Article  ADS  Google Scholar 

  65. R.A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl, P. Szepfalusy, Ann. Phys. (N.Y.) 47, 565 (1968)

    Article  ADS  Google Scholar 

  66. B.D. Josephson, Phys. Lett. 21, 608 (1966)

    Article  ADS  Google Scholar 

  67. F. Pistolesi, C. Castellani, C. Di Castro, G.C. Strinati, Phys. Rev. B 69, 024513 (2004)

    Article  ADS  Google Scholar 

  68. N. Dupuis, Phys. Rev. Lett. 102, 190401 (2009)

    Article  ADS  Google Scholar 

  69. N. Dupuis, Phys. Rev. A 80, 043627 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  70. E. Arahata, T. Nikuni, A. Griffin, Phys. Rev. A 84, 053612 (2011)

    Article  ADS  Google Scholar 

  71. L.P. Pitaevskii, S. Stringari, Bose–Einstein Condensation (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  72. A. Griffin, T. Nikuni, E. Zaremba, Bose-Condensed Gases at Finite Temperatures (Cambridge University Press, New York, 2009)

    Book  MATH  Google Scholar 

  73. P.A. Andreev, L.S. Kuz’menkov, Eur. Phys. J. D 68, 270 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Prof. I. Vakarchuk and Dr. A. Rovenchak for stimulating discussions. This work was partly supported by Project FF-30F (No. 0116U001539) from the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Pastukhov.

Appendix

Appendix

In this section, we present the explicit expressions for the imaginary parts of the exact second-order vertices in the low-length limit. The leading-order contribution is determined by all diagrams with only two vertices, namely \(D_{\varphi \varphi \rho }(K,Q|P)\) and \(D_{\rho \rho \rho }(K,Q,P)\). Feynman diagrams contributing to \(\mathfrak {R}\Pi _{\varphi \rho }(\omega ,\mathbf{k})\) and \(\mathfrak {I}\Pi _{\rho \rho }(\omega ,\mathbf{k})\) are given in Figs. 2 and 3, respectively. In the same manner, the low-energy behavior of \(\mathfrak {I}\Pi _{\varphi \varphi }(\omega ,\mathbf{k})\) can be easily obtained from Fig. 1. For convenience terms contributing to the Beliaev damping

Fig. 2
figure 2

Diagrammatic representation of the leading-order contribution to \(\mathfrak {R}\Pi _{\varphi \rho }(\omega ,\mathbf{k})\). Crosses denote the spectral weights of the appropriate pair correlation functions (see Ref. [55] for details)

Fig. 3
figure 3

Exact low-energy asymptotics of \(\mathfrak {I}\Pi _{\rho \rho }(\omega ,\mathbf{k})\)

$$\begin{aligned} \mathfrak {I}\Pi ^B_{\varphi \varphi }(\omega ,\mathbf{k})= & {} \frac{\pi }{4V}\sum _{\mathbf{q}\ne 0} \frac{\hbar ^4\mathbf{kq}}{m^2}\left[ \mathbf{kq}\frac{c_\mathbf{q}}{q} \frac{|\mathbf{q}+\mathbf{k}|}{c_\mathbf{q+k}}-\mathbf{k}(\mathbf{q}+\mathbf{k})\right] \nonumber \\&\delta (E_{\mathbf{q}+\mathbf{k}}+E_\mathbf{q}-\omega ), \end{aligned}$$
(7.1)
$$\begin{aligned} \mathfrak {I}\Pi ^B_{\rho \rho }(\omega ,\mathbf{k})= & {} \frac{\pi }{8V}\sum _{\mathbf{q}\ne 0} \frac{\hbar ^2q|\mathbf{q}+\mathbf{k}|}{\rho ^2c_\mathbf{q}c_\mathbf{q+k}}\left[ \frac{\mathbf{q}(\mathbf{q}+\mathbf{k})}{q|\mathbf{q}+\mathbf{k}|}c_\mathbf{q}c_{\mathbf{q}+\mathbf{k}}-\rho ^2\frac{\partial }{\partial \rho }\frac{c^2}{\rho }\right] ^2\nonumber \\&\delta (E_{\mathbf{q}+\mathbf{k}}+E_\mathbf{q}-\omega ), \end{aligned}$$
(7.2)
$$\begin{aligned} \mathfrak {R}\Pi ^B_{\varphi \rho }(\omega ,\mathbf{k})= & {} -\frac{\pi }{4V}\sum _{\mathbf{q}\ne 0} \frac{\hbar ^3\mathbf{kq}}{m\rho }\left[ \frac{\mathbf{q}(\mathbf{q}+\mathbf{k})}{q}c_\mathbf{q} -\frac{|\mathbf{q}+\mathbf{k}|}{c_\mathbf{q+k}}\rho ^2\frac{\partial }{\partial \rho }\frac{c^2}{\rho }\right] \nonumber \\&\delta (E_{\mathbf{q}+\mathbf{k}}+E_\mathbf{q}-\omega ), \end{aligned}$$
(7.3)

and the Landau damping

$$\begin{aligned} \mathfrak {I}\Pi ^L_{\varphi \varphi }(\omega ,\mathbf{k})= & {} -\omega \frac{\pi }{V}\sum _{\mathbf{q}\ne 0} \left[ \frac{\hbar ^2\mathbf{kq}}{m}\right] ^2\left\{ \frac{\partial }{\partial E_\mathbf{q}}n(\beta E_\mathbf{q})\right\} \delta (E_{\mathbf{q}+\mathbf{k}}-E_\mathbf{q}-\omega ), \end{aligned}$$
(7.4)
$$\begin{aligned} \mathfrak {I}\Pi ^L_{\rho \rho }(\omega ,\mathbf{k})= & {} -\omega \frac{\pi }{4V}\sum _{\mathbf{q}\ne 0}\left( \frac{E_\mathbf{q}}{\rho }\right) ^2 \left[ 1+\frac{\rho ^2}{c^2_\mathbf{q}}\frac{\partial }{\partial \rho }\frac{c^2}{\rho }\right] ^2\left\{ \frac{\partial }{\partial E_\mathbf{q}}n(\beta E_\mathbf{q})\right\} \nonumber \\&\delta (E_{\mathbf{q}+\mathbf{k}}-E_\mathbf{q}-\omega ), \end{aligned}$$
(7.5)
$$\begin{aligned} \mathfrak {R}\Pi ^L_{\varphi \rho }(\omega ,\mathbf{k})= & {} \omega \frac{\pi }{2V}\sum _{\mathbf{q}\ne 0}\frac{\hbar ^2 \mathbf{kq}}{m}\frac{E_\mathbf{q}}{\rho }\left[ 1+\frac{\rho ^2}{c^2_\mathbf{q}}\frac{\partial }{\partial \rho }\frac{c^2}{\rho }\right] \left\{ \frac{\partial }{\partial E_\mathbf{q}}n(\beta E_\mathbf{q})\right\} \nonumber \\&\delta (E_{\mathbf{q}+\mathbf{k}}-E_\mathbf{q}-\omega ), \end{aligned}$$
(7.6)

are written separately.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pastukhov, V. Infrared Behavior of Dipolar Bose Systems at Low Temperatures. J Low Temp Phys 186, 148–162 (2017). https://doi.org/10.1007/s10909-016-1659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1659-9

Keywords

Navigation