Skip to main content
Log in

Heat Transfer in \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) Mixtures in Cylindrical Geometry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The paper presents the results of theoretical studies of the transport processes that take place in the newly proposed experiments on study of a vibrating quartz fork in superfluid \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) mixtures. In addition to known mechanisms of energy loss from a vibrating quartz fork such as first sound radiation or interaction with thermal excitations, two more mechanisms specific for \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) mixtures are proposed and studied in the paper. The relative contribution of these mechanisms: second sound and effective diffusion, is considered, and experimental conditions under which these mechanisms become effective are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D.O. Clubb, O.V.L. Buu, R.M. Bowley, R. Nyman, J.R. Owers-Bradley, J. Low Temp. Phys. 136, 1 (2004)

    Article  ADS  Google Scholar 

  2. M. Blažková, D. Schmoranzer, L. Skrbek, Phys. Rev. E 75, 025302-1 (2007)

    ADS  Google Scholar 

  3. M. Blažková, M. Človečko, E. Gažo, L. Skrbek, P. Skyba, J. Low Temp. Phys. 148, 305 (2007)

    Article  ADS  Google Scholar 

  4. M. Blažková, M. Človečko, V.B. Eltsov, E. Gažo, R. de Graaf, J.J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, W.F. Vinen, J. Low Temp. Phys. 150, 525 (2008)

    Article  ADS  Google Scholar 

  5. E.M. Pentti, J.T. Tuoriniemi, A.J. Salmela, A.P. Sebedash, J. Low Temp. Phys. 150, 555 (2008)

    Article  ADS  Google Scholar 

  6. E. Pentti, J. Rusti, A. Salmela, A. Sebedash, J. Tuoriniemi, REPORT TKK-KYL-020, 36 (2009)

  7. D. Schmoranzer, M. La Mantia, G. Sheshin, I. Gritsenko, A. Zadorozhko, M. Rotter, L. Skrbek, J. Low Temp. Phys. 136, 317 (2011)

    Article  ADS  Google Scholar 

  8. A. Salmela, J. Tuoriniemi, J. Rysti, J. Low Temp. Phys. 162, 678 (2011)

    Article  ADS  Google Scholar 

  9. D.I. Bradley, M. Človečko, S.N. Fisher, D. Garg, E. Guise, R.P. Haley, O. Kolosov, G.R. Pickett, V. Tsepelin, D. Schmoranzer, S. Skrbek, Phys. Rev. B 85, 014501 (2012)

    Article  ADS  Google Scholar 

  10. R. Blaauwgeers, M. Blazkova, M. Človečko, V.B. Eltsov, R. De Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)

    Article  ADS  Google Scholar 

  11. G.A. Sheshin, A.A. Zadorozhko, E.Y. Rudavskii, V.K. Chagovets, L. Skrbek, M. Blazkova, J. Low Temp. Phys. 34, 1111 (2008)

    Google Scholar 

  12. V. Bakhvalova, V. Chagovets, I. Gritsenko, A.G. Sheshin, J. Low Temp. Phys. (2016). doi:10.1007/s10909-016-1712-8

    Google Scholar 

  13. I.M. Khalatnikov, An Introduction to the Theory of Superfluidity (Addison-Wesley, Redwood City, 1989)

    Google Scholar 

  14. K. Nemchenko, S. Rogova, J. Mol. Liq. 151, 187 (2010)

    Article  Google Scholar 

  15. K. Nemchenko, S. Rogova, J. Low Temp. Phys. 175, 85 (2014). doi:10.1007/s10909-016-1712-8

    Article  ADS  Google Scholar 

  16. V. Chagovets, G. Sheshin (Private communication, 2016)

Download references

Acknowledgements

Authors cordially thank the researchers from the Institute of Low Temperature Physics, Kharkov Dr. V. Chagovets and Dr. G. Sheshin for private communication about the preliminary results of experiments with a vibrating fork immersed to superfluid \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) mixtures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rogova.

Appendix

Appendix

After Laplace transform of the system (1) and excluding w(rt), the system of two equations is obtained

$$\begin{aligned} c(r,p)= & {} A_1 \Delta _{\mathrm{r}} c+B_1 \Delta _{\mathrm{r}} T \nonumber \\ T(r,p)= & {} A_2 \Delta _{\mathrm{r}} c+B_2 \Delta _{\mathrm{r}} T, \end{aligned}$$
(6)

where \(\Delta _{\mathrm{r}}\) is Laplacian in cylindrical coordinates, p is a parameter of Laplace transform (inverse time). Here

$$\begin{aligned} A_1 (p)= & {} \frac{1}{p}\left( {\frac{u_{2N}^2 }{p}+D} \right) , \\ A_2 (p)= & {} \frac{1}{p}\left( {\frac{T_0 \bar{{S}}u_{2N}^2 }{c_0 C_{\mathrm{V}} }\frac{1}{p}+\frac{Dk_{\mathrm{T}} \rho _0 \zeta }{C_{\mathrm{V}} }} \right) , \\ B_1 (p)= & {} \frac{1}{p}\left( {\frac{c_0 \bar{{S}}\rho _{\mathrm{s}} }{\rho _0 \rho _{\mathrm{n}} }\frac{1}{p}+D\frac{k_{\mathrm{T}} }{T_0 }} \right) , \\ B_2 (p)= & {} \frac{1}{p}\left( {\chi +\frac{Dk_{\mathrm{T}}^2 \rho _0 \zeta }{T_0 C_{\mathrm{V}} }+\frac{u_{2\varepsilon }^2 }{p}} \right) . \end{aligned}$$

The system (6) can be transformed to the diagonal form

$$\begin{aligned} \left\{ {\begin{array}{l} F=\gamma \Delta _{\mathrm{r}} F \\ G=\eta \Delta _{\mathrm{r}} G \\ \end{array}} \right. \end{aligned}$$
(7)

where \(F=T+\alpha _{1}c\, G=T+\alpha _2c\) are linear combinations, and

$$\begin{aligned} \gamma= & {} \frac{A_1 (p)+B_2 (p)+\sqrt{\left( {A_1 (p)-B_2 (p)} \right) ^{2}+4A_2 (p)B_1 (p)}}{2}, \\ \eta= & {} \frac{A_1 (p)+B_2 (p)-\sqrt{\left( {A_1 (p)-B_2 (p)} \right) ^{2}+4A_2 (p)B_1 (p)}}{2}, \\ \alpha _1= & {} \frac{A_2 (p)}{\gamma -A_1 (p)}, \quad \alpha _2 =\frac{A_2 (p)}{\eta -A_1 (p)}. \end{aligned}$$

The solution of system (5) can be written as

$$\begin{aligned} F= & {} F_1 I_0 \left( \sqrt{\gamma }r\right) +F_2 K_0 \left( \sqrt{\gamma }r\right) \nonumber \\ G= & {} G_1 I_0 \left( \sqrt{\eta }r\right) +G_2 K_0 \left( \sqrt{\eta }r\right) \end{aligned}$$
(8)

where \(I_{0}\) and \(K_{0}\) are modified Bessel functions.

Substitution of (6)–(8) gives the final result for concentration and temperature

$$\begin{aligned} c\left( r,t\right)= & {} \frac{1}{\alpha _1 -\alpha _2 }\left[ {-G_1 I_0 \left( \sqrt{\eta }r\right) -G_2 K_0 \left( \sqrt{\eta }r\right) +F_1 I_0 \left( \sqrt{\gamma }r\right) +F_2 K_0 \left( \sqrt{\gamma }r\right) } \right] \\ T\left( r,t\right)= & {} \frac{-\alpha _2 }{\alpha _1 -\alpha _2 }\left[ {F_1 I_0 \left( \sqrt{\gamma }r\right) +F_2 K_0 \left( \sqrt{\gamma }r\right) +\alpha _1 \left( {G_1 I_0 \left( \sqrt{\eta }r\right) +G_2 K_0 \left( \sqrt{\eta }r\right) } \right) } \right] \end{aligned}$$

Here \(F_{i}, G_{i}\,(i=1,2)\) are constants depending on p that are found from the boundary conditions and finally give the results (3) of the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemchenko, K., Rogova, S. & Vikhtinskaya, T. Heat Transfer in \(^{3}\hbox {He}\)\(^{4}\hbox {He}\) Mixtures in Cylindrical Geometry. J Low Temp Phys 187, 324–330 (2017). https://doi.org/10.1007/s10909-017-1761-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1761-7

Keywords

Navigation