Skip to main content
Log in

Quantum Turbulence Generated and Detected by a Vibrating Quartz Fork

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Flow due to a commercially available vibrating quartz fork is studied in gaseous helium, He I, He II and 3He–B, over a wide range of temperatures and pressures. On increasing the driving force, the flow changes in character from laminar (characterized by a linear velocity versus drive dependence) to turbulent (characterized by a square root velocity versus drive dependence). In classical fluids, we characterize this transition by a critical Reynolds number, Re c =U cr δ/ν, where U cr is the critical velocity, ν stands for the kinematic viscosity, \(\delta=\sqrt{2\nu/\omega}\) is the viscous penetration depth and ω is the angular frequency of oscillations. U cr of order 10 cm/s observed in He II and 1 mm/s in 3He–B agree with those found with other vibrating objects such as spheres, wires and grids, as well as with available numerical simulations of vortex motion in an applied ac flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Blaauwgeers et al., J. Low Temp. Phys. 146, 537 (2007)

    Article  ADS  Google Scholar 

  2. H. Schlichting, K. Gersten, Boundary-Layer Theory (Springer, Berlin, 1996)

    Google Scholar 

  3. R.D. McCarty, Technical Note 631, National Bureau of Standards, Gaithersburg, Maryland, 1972

  4. V.D. Arp, R.D. McCarty, The properties of Critical Helium Gas, Technical Report, Univ. Oregon, 1998

  5. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  6. M. Blažková, D. Schmoranzer, L. Skrbek, Phys. Rev. E 75, 025302 (2007)

    Article  ADS  Google Scholar 

  7. This transition in He II was also independently observed by J. Hosio, V.B. Eltsov and M. Krusius in LTL Helsinki; private communication

  8. M. Morishita, T. Kuroda, A. Sawada, T. Satoh, J. Low Temp. Phys. 76, 387 (1989)

    Article  ADS  Google Scholar 

  9. H. Yano et al., J. Low Temp. Phys. 138, 561 (2005)

    Article  ADS  Google Scholar 

  10. D.I. Bradley et al., Phys. Rev. Lett. 84, 1252 (2000)

    Article  ADS  Google Scholar 

  11. D.I. Bradley et al., Phys. Rev. Lett. 93, 235302 (2004)

    Article  ADS  Google Scholar 

  12. J. Jäger, B. Schruder, W. Schoepe, Phys. Rev. Lett. 74, 566 (1995)

    Article  ADS  Google Scholar 

  13. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. Lett. 92, 244501 (2004)

    Article  ADS  Google Scholar 

  14. H.A. Nichol, L. Skrbek, P.C. Hendry, P.V.E. McClintock, Phys. Rev. E 70, 056307 (2004)

    Article  ADS  Google Scholar 

  15. D. Charalambous et al., Phys. Rev. E 74, 036307 (2006)

    Article  ADS  Google Scholar 

  16. R. Hanninen, M. Tsubota, W.F. Vinen, Phys. Rev. B 75, 064502 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Skrbek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blažková, M., Človečko, M., Gažo, E. et al. Quantum Turbulence Generated and Detected by a Vibrating Quartz Fork. J Low Temp Phys 148, 305–310 (2007). https://doi.org/10.1007/s10909-007-9389-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-007-9389-7

PACS

Navigation