Skip to main content
Log in

Dislocation Mobility and Anomalous Shear Modulus Effect in \(^4\)He Crystals

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We calculate the dislocation glide mobility in solid \(^4\)He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid \(^4\)He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid \(^4\)He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid \(^4\)He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The first of Eqs. (8) differs slightly from the corresponding expression in the first of Ref. [33, 34]. That expression contains a small error, which we are very grateful to Prof. Saslow for pointing out to us.

  2. We consider the limit whereby the effective mass per unit length as well as the effective tension per unit length of the dislocation line is negligible.

  3. The acceleration time constant is given by the ratio of mass per unit length to the inverse mobility of the dislocation line. This time constant is very small \(\sim 10^{-13}\) s.

References

  1. J.H. Hetherington, Phys. Rev. 176, 231 (1968)

    Article  ADS  Google Scholar 

  2. A.F. Andreev, I.M. Lifshitz, Sov. Phys. JETP 29, 6 (1969)

    Google Scholar 

  3. E. Polturak, N. Gov, Contemp. Phys. 44(2), 145–151 (2003)

    Article  ADS  Google Scholar 

  4. E. Kim, M.H.W. Chan, Nature (London) 427, 225 (2004)

    Article  ADS  Google Scholar 

  5. A.S.C. Rittner, J.D. Reppy, Phys. Rev. Lett. 98, 175302 (2007)

    Article  ADS  Google Scholar 

  6. J. Day, J. Beamish, Nature (London) 450, 853 (2007)

    Article  ADS  Google Scholar 

  7. J. Day, O. Syshchenko, J. Beamish. Phys. Rev. B 79, 214524 (2009)

    Article  ADS  Google Scholar 

  8. D.Y. Kim, M.H.W. Chan, Phys. Rev. B 90, 064503 (2014)

    Article  ADS  Google Scholar 

  9. I. Iwasa, Phys. Rev. B 81, 104527 (2010)

    Article  ADS  Google Scholar 

  10. I. Iwasa, J. Low Temp. Phys. 171, 287 (2013)

    Article  ADS  Google Scholar 

  11. A.D. Fefferman, F. Souris, A. Haziot, J.R. Beamish, S. Balibar, Phys. Rev. B 89, 014105 (2014)

    Article  ADS  Google Scholar 

  12. C. Zhou, J.-J. Su, M.J. Graf, C. Reichhardt, A.V. Balatsky, I.J. Beyerlein, Philos. Mag. Lett. 92(11), 608–616 (2012)

    Article  ADS  Google Scholar 

  13. C. Zhou, J.-J. Su, M.J. Graf, C. Reichhardt, A.V. Balatsky, I.J. Beyerlein, Phys. Rev. B 88, 024513 (2013)

    Article  ADS  Google Scholar 

  14. A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. B 90, 184508 (2014)

    Article  ADS  Google Scholar 

  15. M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  Google Scholar 

  16. L. Pollet, M. Boninsegni, A.B. Kuklov, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 98, 135301 (2007)

    Article  ADS  Google Scholar 

  17. Y. Vekhov, R.B. Hallock, Phys. Rev. B 91, 180506(R) (2015)

    Article  ADS  Google Scholar 

  18. D. Aleinikava, E. Dedits, A.B. Kuklov, J. Low Temp. Phys. 162, 464–475 (2011)

    Article  ADS  Google Scholar 

  19. Ş.G. Söyler, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 103, 175301 (2009)

    Article  ADS  Google Scholar 

  20. S. Balibar, J. Beamish, R.B. Hallock, J. Low Temp. Phys. 180, 3 (2015)

    Article  ADS  Google Scholar 

  21. R.B. Hallock, J. Low Temp. Phys. 180, 6 (2015)

    Article  ADS  Google Scholar 

  22. A.B. Kuklov, Phys. Rev. B 90, 184508 (2014)

    Article  ADS  Google Scholar 

  23. H. Choi, D. Takahashi, K. Kono, E. Kim, Science 330, 1512 (2010)

    Article  ADS  Google Scholar 

  24. H. Choi, D. Takahashi, K. Kono, E. Kim, Phys. Rev. Lett. 108, 105302 (2012)

    Article  ADS  Google Scholar 

  25. J. Toner, Phys. Rev. Lett. 100, 035302 (2008)

    Article  ADS  Google Scholar 

  26. A.N. Malmi-Kakkada, O.T. Valls, C. Dasgupta, Phys. Rev. B. 90, 024202 (2014)

    Article  ADS  Google Scholar 

  27. F. Souris, A.D. Fefferman, A. Haziot, N. Garroum, J.R. Beamish, S. Balibar, J. Low Temp. Phys. 178, 149–161 (2015)

    Article  ADS  Google Scholar 

  28. X. Rojas, C. Pantalei, H.J. Maris, S. Balibar, J. Low Temp. Phys. 158, 478–484 (2010)

    Article  ADS  Google Scholar 

  29. X. Rojas, A. Haziot, V. Bapst, S. Balibar, H.J. Maris, Phys. Rev. Lett. 105, 145302 (2010)

    Article  ADS  Google Scholar 

  30. A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, S. Balibar, Phys. Rev. Lett. 110, 035301 (2013)

    Article  ADS  Google Scholar 

  31. A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, S. Balibar, Phys. Rev. B 87, 060509(R) (2013)

    Article  ADS  Google Scholar 

  32. T.C. Lubensky, S. Ramaswamy, J. Toner, Phys. Rev. B 33, 11 (1986)

    Google Scholar 

  33. W.M. Saslow, Phys. Rev. B 15, 173 (1977)

    Article  ADS  Google Scholar 

  34. W.M. Saslow, J. Low Temp. Phys. 169, 248–263 (2012)

    Article  ADS  Google Scholar 

  35. H. Suzuki, J. Phys. Soc. Jpn. 35, 1472 (1973)

    Article  ADS  Google Scholar 

  36. H. Suzuki, J. Phys. Soc. Jpn. 42, 1865 (1977)

    Article  ADS  Google Scholar 

  37. J.A. Gorman, D.S. Wood, T. Vreeland Jr., J. Appl. Phys. 40, 2 (1969)

    Google Scholar 

  38. J. Day, O. Syshchenko, J. Beamish. Phys. Rev. Lett. 104, 075302 (2010)

    Article  ADS  Google Scholar 

  39. O. Syshchenko, J. Day, J. Beamish. Phys. Rev. Lett. 104, 195301 (2010)

    Article  ADS  Google Scholar 

  40. G.N. Lazareva, A.S. Bakai, J. Phys. Condens. Matter. 21, 295401 (2009)

    Article  Google Scholar 

  41. C. Dasgupta, O.T. Valls, Phys. Rev. E 79, 016303 (2009)

    Article  ADS  Google Scholar 

  42. G.I. Taylor, Proc. R. Soc. Lond. A 145, 362 (1934)

    Article  ADS  Google Scholar 

  43. E. Orowan, Proc. Phys. Soc. 52, 8 (1940)

    Article  ADS  Google Scholar 

  44. A. Granato, K. Lucke, J. Appl. Phys. 27, 583 (1956)

    Article  ADS  Google Scholar 

  45. A.D.B. Woods, A.C. Hollis, Hallett. Can. J. Phys. 41, 596–609 (1962)

    Article  ADS  Google Scholar 

  46. J.T. Tough, W.D. McCormick, J.G. Dash, Phys. Rev. 132, 2373–2378 (1963)

    Article  ADS  Google Scholar 

  47. S. Putterman, Phys. Rev. Lett. 26(8), 421–422 (1971)

  48. C-I Um. Technical report—office of naval research (1992)

  49. S.I. Shevchenko, Sov. J. Low Temp. Phys. 14, 553 (1988)

    Google Scholar 

  50. M.H.W. Chan, K.I. Blum, S.Q. Murphy, G.K.S. Wong, J.D. Reppy, Phys. Rev. Lett. 61, 1950 (1988)

    Article  ADS  Google Scholar 

  51. E. Kim, M.H.W. Chan, Nature 427, 225 (2004)

    Article  ADS  Google Scholar 

  52. M. Boninsegni, N.V. Prokof’ev, Rev. Mod. Phys. 84, 759 (2012)

    Article  ADS  Google Scholar 

  53. A. Haziot, A.D. Fefferman, F. Souris, J.R. Beamish, S. Balibar, Phys. Rev. B 88, 014106 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by IUSSTF Grant 94-2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oriol T. Valls.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malmi-Kakkada, A.N., Valls, O.T. & Dasgupta, C. Dislocation Mobility and Anomalous Shear Modulus Effect in \(^4\)He Crystals. J Low Temp Phys 186, 259–274 (2017). https://doi.org/10.1007/s10909-016-1689-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1689-3

Keywords

Navigation