Skip to main content
Log in

Dynamics of Laser Ablation in Superfluid \(^4\hbox {He}\)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Pulsed laser ablation of metal targets immersed in superfluid \(^4\hbox {He}\) is visualized by time-resolved shadowgraph photography and the products are analyzed by post-experiment atomic force microscopy (AFM) measurements. The expansion dynamics of the gaseous ablation half-bubble on the target surface appears underdamped and follows the predicted behavior for the thermally induced bubble growth mechanism. An inherent instability of the ablation bubble appears near its maximum radius and no tightly focused cavity collapse or rebound events are observed. During the ablation bubble retreat phase, the presence of sharp edges in the target introduces flow patterns that lead to the creation of large classical vortex rings. Furthermore, on the nanometer scale, AFM data reveal that the metal nanoparticles created by laser ablation are trapped in spherical vortex tangles and quantized vortex rings present in the non-equilibrium liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Yang, Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials (Taylor & Francis Group, LLC, Boca Raton, 2012)

    Book  Google Scholar 

  2. T.E. Itina, J. Phys. Chem. C 115, 5044 (2011)

    Article  Google Scholar 

  3. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Phys. Chem. Chem. Phys. 15, 3108 (2013)

    Article  Google Scholar 

  4. A.D. Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O.D. Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083 (2013)

    Article  Google Scholar 

  5. P. Wagener, S. Ibrahimkutty, A. Menzel, A. Plech, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3068 (2013)

    Article  Google Scholar 

  6. M. Dell’Aglio, R. Gaudiuso, O.D. Pascale, A.D. Giacomo, Appl. Surf. Sci. 348, 4 (2015)

    Article  Google Scholar 

  7. A.I. Talukder, P. Sultana, A.F.M.Y. Haider, M. Wahadoszamen, K.M. Abedin, S.F.U. Farhad, Eur. Phys. J. D 60, 295 (2010)

    Article  ADS  Google Scholar 

  8. M. Dell’Aglio, R. Gaudiuso, R. ElRashedy, O.D. Pascale, G. Palazzo, A.D. Giacomo, Phys. Chem. Chem. Phys. 15, 20868 (2013)

    Article  Google Scholar 

  9. K. Sasaki, N. Takda, Pure Appl. Chem. 82, 1317 (2010)

    Article  Google Scholar 

  10. N. Takada, T. Sasaki, K. Sasaki, Appl. Phys. A 93, 833 (2008)

    Article  ADS  Google Scholar 

  11. E.B. Gordon, A.V. Karabulin, M.I. Matyushenko, V.D. Sizov, I.I. Khodos, Chem. Phys. Lett. 519–520, 64 (2012)

    Article  Google Scholar 

  12. L.F. Gomez, E. Loginov, A.F. Vilesov, Phys. Rev. Lett. 108, 155302 (2012)

    Article  ADS  Google Scholar 

  13. E. Latimer, D. Spence, C. Feng, A. Boatwright, A.M. Ellis, S. Yang, NANO Lett. 14, 2902 (2014)

    Article  ADS  Google Scholar 

  14. P. Thaler, A. Volk, D. Knez, F. Lackner, G. Haberfehlner, J. Steurer, M. Schnedlitz, W.E. Ernst, J. Chem. Phys. 143, 134201 (2015)

    Article  ADS  Google Scholar 

  15. D. Mateo, J. Eloranta, G.A. Williams, J. Chem. Phys. 142, 064510 (2015)

    Article  ADS  Google Scholar 

  16. V. Fernandez, A. Garcia, K. Vossoughian, E. Popov, S. Garrett, J. Eloranta, J. Phys. Chem. A 119, 10882 (2015)

    Article  Google Scholar 

  17. J.L. Persson, Q. Hui, M. Nakamura, M. Takami, Phys. Rev. A 52, 2011 (1995)

    Article  ADS  Google Scholar 

  18. A. Wada, Y. Aratono, Chem. Lett. 32, 200 (2003)

    Article  Google Scholar 

  19. Q. Hui, M. Takami, J. Low Temp. Phys. 119, 393 (2000)

    Article  ADS  Google Scholar 

  20. E. Popov, J. Eloranta, J. Chem. Phys. 142, 204704 (2015)

    Article  ADS  Google Scholar 

  21. V. Lebedev, P. Moroshkin, J.P. Toennies, A. Weis, J. Chem. Phys. 133, 154508 (2010)

    Article  ADS  Google Scholar 

  22. E. Vehmanen, V. Ghazarian, C. Sams, I. Khatchatryan, J. Eloranta, V.A. Apkarian, J. Phys. Chem. A 115, 7077 (2011)

    Article  Google Scholar 

  23. E. Popov, M. Mammetkuliyev, J. Eloranta, J. Chem. Phys. 138, 204307 (2013)

    Article  ADS  Google Scholar 

  24. J. Eloranta, A simplified C programming interface for research instruments (2016), http://sourceforge.net/projects/libmeas/

  25. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671 (2012)

    Article  Google Scholar 

  26. J. Schindelin, I. Arganda-Carreras, E. Frise et al., Nat. Methods 9, 676 (2012)

    Article  Google Scholar 

  27. D. Necas, P. Klapetek, Cent. Eur. J. Phys. 10, 181 (2012)

    Google Scholar 

  28. A. Garcia, X. Buelna, E. Popov, J. Eloranta, J. Chem. Phys. 145, 124504 (2016)

    Article  ADS  Google Scholar 

  29. J. Lam, J. Lombard, C. Dujardin, G. Ledoux, S. Merabia, D. Amans, Appl. Phys. Lett. 108, 074104 (2016)

    Article  ADS  Google Scholar 

  30. T. Tsuji, Y. Tsuboi, N. Kitamura, M. Tsuji, Appl. Surf. Sci. 229, 365 (2004)

    Article  ADS  Google Scholar 

  31. M.S. Plesset, A. Prosperetti, Ann. Rev. Fluid Mech. 9, 145 (1977)

    Article  ADS  Google Scholar 

  32. S. Hilgenfeldt, M.P. Brenner, S. Grossmann, D. Lohse, J. Fluid Mech. 365, 171 (1998)

    Article  ADS  Google Scholar 

  33. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  34. K. Vokurka, Acustica 59, 214 (1986)

    Google Scholar 

  35. R.H. Cole, Underwater Explosions (Princeton University Press, Princeton, 1948)

    Book  Google Scholar 

  36. R.T. Knapp, J.W. Daily, F.G. Hammitt, Cavitation (McGraw-Hill, New York, 1970)

    Google Scholar 

  37. A.V. Benderskii, J. Eloranta, R. Zadoyan, V.A. Apkarian, J. Chem. Phys. 117, 1201 (2002)

    Article  ADS  Google Scholar 

  38. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  39. A. Qu, A. Trimeche, P. Jacquier, J. Grucker, Phys. Rev. B 93, 174521 (2016)

    Article  ADS  Google Scholar 

  40. N. Takada, T. Nakano, K. Sasaki, Appl. Phys. A 101, 255 (2010)

    Article  ADS  Google Scholar 

  41. Y. Tomita, M. Tsubota, K. Nagane, N. An-naka, J. Appl. Phys. 88, 5993 (2000)

    Article  ADS  Google Scholar 

  42. L.W. Florschuetz, B.T. Chao, J. Heat Transf. 87, 209 (1965)

    Article  Google Scholar 

  43. J. Wilks, The Properties of Liquid and Solid Helium (Clarendon Press, Oxford, 1967)

    Google Scholar 

  44. S.W. Van Sciver, Cryogenics 19, 385 (1979)

    Article  ADS  Google Scholar 

  45. P. Dergarabedian, J. Appl. Mech. 20, 537 (1953)

    Google Scholar 

  46. X. Buelna, A. Freund, D. Gonzalez, E. Popov, J. Eloranta, J. Phys. Chem. B (2016)

  47. R.J. Donnelly, Quantized Vortices in Helium II, Studies in Low Temperature Physics, vol. 3 (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  48. A.F. Borghesani, Ions and Electrons in Liquid Helium (Oxford Science Publications, New York, 2007)

    Book  Google Scholar 

  49. E. Gordon, A. Karabulin, V. Matyushenko, V. Sizov, I. Khodos, Phys. Chem. Chem. Phys. 14, 25229 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Foundation Grants CHE-1262306 and DMR-1205734 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Eloranta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buelna, X., Popov, E. & Eloranta, J. Dynamics of Laser Ablation in Superfluid \(^4\hbox {He}\) . J Low Temp Phys 186, 197–207 (2017). https://doi.org/10.1007/s10909-016-1668-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1668-8

Keywords

Navigation