Skip to main content
Log in

Spin-Thermodynamics of Ultra-Cold Spin-1 Atoms

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The spin-thermodynamics of a \(N\)-body spin-1 condensate containing only the spin-degrees of freedom is studied via a theory in which \(N\), the total spin \(S\) and its Z-component \(M\) are exactly conserved. The magnetic field \(B\) is considered as zero at first. Then the effect of a residual \(B\) is evaluated. A temperature \(T_3\) is defined as below that all the spatial degrees of freedom can be considered as being frozen and, accordingly, a pure spin-system will emerge. Effort is made to evaluate \(T_3\). When \(T\) goes up from zero, the internal energy \(U\) and the entropy \(S_E\) experience sharp changes in two narrow domains of \(T\) surrounding two turning temperatures \(T_1\) and \(T_2\), the latter is higher. When \(T<T_1\) or \(T>T_2\), \(U\) and \(S_E\) remain unchanged. Whereas when \(T_1<T<T_2\), \(U\propto T\) and \(S_E\propto \ln T\). It was found that \(T_1\) and \(T_2\) originate from the gap \(E_{\mathrm{gap},1}\) (the energy difference between the ground state (g.s.) and the first excited state) and the width (the energy difference between the g.s. and the highest state without spatial excitation) of the spectra, respectively. Thus their appearance is a common feature in spin-thermodynamics. In fact, \(T_1\) marks the lowest excitation of the spin-modes, while \(T_2\) marks the maximization of the entropy in the spin-space. In particular, the T-dependent population density is defined so that the theory can be checked by experimental data. Two kinds of condensates are notable: (i) the strongly trapped systems with a very small \(N\), they can work as pure spin-systems at relatively higher temperature; (ii) the systems with a high magnetization (say, \(N-|M|\le 4\)), the dimensions of their spin-spaces are very low. Furthermore, a larger \(\omega \) together with a large N (for Rb) or a large \(|M|\) (for Na) will lead to a sufficiently large \(E_{\mathrm{gap},1}\) so that a real g.s. can be experimentally created at a higher temperature. The spin-thermodynamics would remain valid whenever the spatial modes decouple from the spin-modes. This can occur at a higher temperature as demonstrated in Pechkis et al. (Phys Rev Lett 111:025301, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Stenger et al., Nature 396, 345 (1998)

    Article  ADS  Google Scholar 

  2. T.L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  3. T. Ohmi, K. Machida, J. Phys. Soc. Jpn. 67, 1822 (1998)

    Article  ADS  Google Scholar 

  4. C.K. Law, H. Pu, N.P. Bigelow, Phys. Rev. Lett. 81, 5257 (1998)

    Article  ADS  Google Scholar 

  5. H. Pu, C.K. Law, S. Raghavan, J.H. Eberly, N.P. Bigelow, Phys. Rev A 60, 1463 (1999)

    Article  ADS  Google Scholar 

  6. J.M. Zhang, S. Cui, H. Jing, D.L. Zhou, W.M. Liu, Phys. Rev. A 80, 043623 (2009)

    Article  ADS  Google Scholar 

  7. M.S. Chang, Q. Qin, W.X. Zhang, L. You, M.S. Chapman, Nat. Phys. 1, 111 (2005)

    Article  Google Scholar 

  8. See the recent review, Y. Kawaguchi and M. Ueda. Phys. Rep. 520, 253 (2012). and references therein

  9. B. Pasquiou, M. Marechal, L. Vernac, O. Gorceix, B. Laburthe-Tolra, Phys. Rev. Lett. 108, 045307 (2012)

    Article  ADS  Google Scholar 

  10. H. Jing, D.S. Goldbaum, L. Buchmann, P. Meystre, Phys. Rev. Lett. 106, 223601 (2011)

    Article  ADS  Google Scholar 

  11. B. Pasquiou, E. Marechal, G. Bismut, P. Pedri, L. Vernac, O. Gorceix, B. Laburthe-Tolra, Phys. Rev. Lett. 106, 255303 (2011)

    Article  ADS  Google Scholar 

  12. A. de-Paz, A. Chotia, E. Marechal, P. Pedri, L. Vernac, O. Gorceix and B. Laburthe-Tolra, arXiv:1212.5469 (2012)

  13. H.K. Pechkis, J.P. Wrubel, A. Schwettmann, P.F. Griffin, R. Barnett, E. Tiesinga, P.D. Lett, Phys. Rev. Lett. 111, 025301 (2013)

    Article  ADS  Google Scholar 

  14. C.G. Bao, Z.B. Li, Phys. Rev. A 72, 043614 (2005)

    Article  ADS  Google Scholar 

  15. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  16. J. Mur-Petit, M. Guilleumas, A. Polls, A. Sanpera, M. Lewenstein, Phys. Rev. A 73, 013629 (2006)

    Article  ADS  Google Scholar 

  17. W. Zhang, S. Yi, L. You, Phys. Rev. A 70, 043611 (2004)

    Article  ADS  Google Scholar 

  18. H. Schmaljohann et al., Appl. Phys. B 79, 1001 (2004)

    Article  ADS  Google Scholar 

  19. J. Katriel, Mol. Struct.:Theochem 547, 1 (2001)

    Article  Google Scholar 

  20. C.G. Bao, Z.B. Li, Phys. Rev. A 70, 043620 (2004)

    Article  ADS  Google Scholar 

  21. W. Pang, Z.B. Li, C.G. Bao, J. Phys. B: At.Mol. Opt. Phys. 40, 577 (2007)

    Article  ADS  Google Scholar 

  22. C.G. Bao, J. Phys. A: Math. Theor. 45, 235002 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The project is supported by the National Basic Research Program of China (2008AA03A314, 2012CB821400), NSFC Projects (11274393, 11074310, 11275279), RFDPHE of China (20110171110026) and NCET-11-0547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z.B., Yao, D.X. & Bao, C.G. Spin-Thermodynamics of Ultra-Cold Spin-1 Atoms. J Low Temp Phys 180, 200–213 (2015). https://doi.org/10.1007/s10909-015-1305-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1305-y

Keywords

Navigation