Skip to main content

Advertisement

Log in

Interplay Between Condensation Energy, Pseudogap, and the Specific Heat of a Hubbard Model in a \(n\)-Pole Approximation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The condensation energy and the specific heat jump of a two-dimensional Hubbard model, suitable to discuss high-\(T_c\) superconductors, are studied. In this work, the Hubbard model is investigated by the Green’s function method within a \(n\)-pole approximation, which allows to consider superconductivity with \(d_{x^2-y^2}\)-wave pairing. In the present scenario, the pseudogap regime emerges when the antiferromagnetic correlations become sufficiently strong to move to lower energies the region around of the nodal point \((\pi ,\pi )\) on the renormalized bands. It is observed that above a given total occupation \(n_T\), the specific heat jump \(\Delta C\) and also the condensation energy \(U(0)\) decrease signaling the presence of the pseudogap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Hubbard, J. Proc. R. Soc. Lond. A 276, 238 (1963)

    Article  ADS  Google Scholar 

  2. D. Scalapino, in Handbook of High-Temperature Superconductivity, ed. by J. Schrieffer, J. Brooks (Springer, New York, 2007), p. 495

  3. E. Gull, A.J. Millis, Phys. Rev. B 86, 241106(R) (2012)

    Article  ADS  Google Scholar 

  4. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, J.M. Wade, J. Supercond. 7, 243 (1994)

    Article  ADS  Google Scholar 

  5. J.W. Loram, J. Luo, J.R. Cooper, W.Y. Liang, J.L. Tallon, J. Phys. Chem. Solids 62, 56 (2001)

    Article  Google Scholar 

  6. J.W. Loram, J.L. Luo, J.R. Cooper, W.Y. Liang, J.L. Tallon, Phys. C 341, 831 (2000)

    Article  ADS  Google Scholar 

  7. T. Matsuzaki, N. Momono, M. Oda, M. Ido, J. Phys. Soc. Jpn. 73, 2232 (2004)

    Article  ADS  Google Scholar 

  8. E. Gull, O. Parcollet, A.J. Millis, Phys. Rev. Lett. 110, 216405 (2013)

    Article  ADS  Google Scholar 

  9. L.M. Roth, Phys. Rev. 184, 451 (1969)

    Article  ADS  Google Scholar 

  10. J. Beenen, D.M. Edwards, Phys. Rev. B 52, 13636 (1995)

    Article  ADS  Google Scholar 

  11. D.N. Zubarev, Sov. Phys. Usp. 3, 320 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  12. R. Kishore, S.K. Joshi, J. Phys. C 4, 2475 (1971)

    Article  ADS  Google Scholar 

  13. E.J. Calegari, S.G. Magalhaes, C.M. Chaves, A. Troper, Solid State Commun. 158, 20 (2013)

    Article  ADS  Google Scholar 

  14. E.J. Calegari, S.G. Magalhaes, Int. J. Mod. Phys. B 25, 41 (2011)

    Article  ADS  MATH  Google Scholar 

  15. T. Herrmann, W. Nolting, J. Magn. Magn. Mater. 170, 253 (1997)

    Article  ADS  Google Scholar 

  16. J.P.F. LeBlanc, E.J. Nicol, J.P. Carbotte, Phys. Rev. B 80, 060505 (2009)

  17. Y. Yanase, M. Ogata, J. Phys. Soc. Jpn. 74, 1534 (2005)

    Article  ADS  MATH  Google Scholar 

  18. A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, Phys. Rev. Lett. 81, 2224 (1998)

Download references

Acknowledgments

This work was partially supported by the Brazilian agencies CNPq, CAPES and FAPERGS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Lausmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lausmann, A.C., Calegari, E.J., Magalhaes, S.G. et al. Interplay Between Condensation Energy, Pseudogap, and the Specific Heat of a Hubbard Model in a \(n\)-Pole Approximation. J Low Temp Phys 179, 94–100 (2015). https://doi.org/10.1007/s10909-014-1259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1259-5

Keywords

Navigation