Skip to main content
Log in

Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential ϕ and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with ϕ left<ϕ right and T left=T right), using a pair of nonlinear Poisson equations (for ϕ and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that N in the present paper corresponds to S xy /B in [5].

References

  1. T. Harman, J.M. Honig, Thermoelectric and Thermomagnetic Effects and Applications (McGraw-Hill, New York, 1967)

    Google Scholar 

  2. V. Zlatic, A.C. Hewson (eds.), Properties and Applications of Thermoelectric Materials (Springer, Dordrecht, 2009)

    Google Scholar 

  3. D.M. Rowe (ed.), Thermoelectrics Handbook: Macro to Nano (CRC Press/Taylor & Francis, Boca Raton, 2006)

    Google Scholar 

  4. B.L. Gallagher, P.N. Butcher, Handbook on Semiconductors, vol. 1 (Elsevier, Amsterdam, 1992), p. 817

    Google Scholar 

  5. R. Fletcher, Semicond. Sci. Technol. 14, R1 (1999)

    Article  ADS  Google Scholar 

  6. H.J. Goldsmid, Introduction to Thermoelectricity (Springer, Heidelberg, 2010)

    Google Scholar 

  7. X. Ying, V. Bayot, M.B. Santos, M. Shayegan, Phys. Rev. B 50, R4969 (1994)

    Article  ADS  Google Scholar 

  8. W.E. Chickering, J.P. Eisenstein, J.L. Reno, Phys. Rev. Lett. 103, 046807 (2009)

    Article  ADS  Google Scholar 

  9. S. Goswami, C. Siegert, M. Baenninger, M. Pepper, I. Farrer, D.A. Ritchie, Phys. Rev. Lett. 103, 026602 (2009)

    Article  ADS  Google Scholar 

  10. K. Yang, B.I. Halperin, Phys. Rev. B 79, 115317 (2009)

    Article  ADS  Google Scholar 

  11. W.E. Chickering, J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. B 81, 245319 (2010)

    Article  ADS  Google Scholar 

  12. D.L. Bergman, V. Oganesyan, Phys. Rev. Lett. 104, 066601 (2010)

    Article  ADS  Google Scholar 

  13. K. Behnia, M.A. Méasson, Y. Kopelevich, Phys. Rev. Lett. 98, 166602 (2007)

    Article  ADS  Google Scholar 

  14. K. Behnia, L. Balicas, Y. Kopelevich, Science 317, 1729 (2007)

    Article  ADS  Google Scholar 

  15. A. Endo, Y. Iye, AIP Conf. Proc. 1399, 617 (2011)

    Article  ADS  Google Scholar 

  16. K. Yoshihiro, J. Kinoshita, K. Inagaki, C. Yamanouchi, T. Endo, Y. Murayama, M. Koyanagi, A. Yagi, J. Wakabayashi, S. Kawaji, Phys. Rev. B 33, 6874 (1984)

    Article  ADS  Google Scholar 

  17. N.R. Cooper, B.I. Halperin, I.M. Ruzin, Phys. Rev. B 55, 2344 (1997)

    Article  ADS  Google Scholar 

  18. H. Akera, H. Suzuura, J. Phys. Soc. Jpn. 74, 997 (2005)

    Article  ADS  MATH  Google Scholar 

  19. T. Ise, H. Akera, H. Suzuura, J. Phys. Soc. Jpn. 74, 259 (2005)

    Article  ADS  Google Scholar 

  20. Y. Komori, T. Okamoto, Phys. Rev. B 71, 113306 (2005)

    Article  ADS  Google Scholar 

  21. K. Fujita, A. Endo, S. Katsumoto, Y. Iye, Physica E 42, 1030 (2010)

    Article  ADS  Google Scholar 

  22. S. Maximov, M. Gbordzoe, H. Buhmann, L.W. Molenkamp, D. Reuter, Phys. Rev. B 70, 121308 (2004)

    Article  ADS  Google Scholar 

  23. M. Jonson, S.M. Girvin, Phys. Rev. B 29, 1939 (1984)

    Article  ADS  Google Scholar 

  24. H. Oji, Phys. Rev. B 29, 3148 (1984)

    Article  ADS  Google Scholar 

  25. R. Fletcher, J.C. Maan, K. Ploog, G. Weimann, Phys. Rev. B 33, 7122 (1986)

    Article  ADS  Google Scholar 

  26. H. Okumura, S. Yamaguchi, H. Nakamura, K. Ikeda, K. Sawada, in Proceedings of ICT98: 17th International Conference on Thermoelectrics, 1998 (1998), p. 89

    Google Scholar 

  27. P.J. Price, J. Appl. Phys. 53, 6863 (1982)

    Article  ADS  Google Scholar 

  28. A.K.M. Wennberg, S.N. Ytterboe, C.M. Gould, H.M. Bozler, J. Klem, H. Morkoç, Phys. Rev. B 34, 4409 (1986). doi:10.1103/PhysRevB.34.4409

    Article  ADS  Google Scholar 

  29. A. Mittal, R.G. Wheeler, M.W. Keller, D.E. Prober, R.N. Sacks, Surf. Sci. 361, 537 (1996)

    Article  ADS  Google Scholar 

  30. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of Continuous Media, 2nd edn. (Pergamon, Oxford, 1984)

    Google Scholar 

  31. T. Harman, J.M. Honig, J. Appl. Phys. 33, 3178 (1962)

    Article  ADS  MATH  Google Scholar 

  32. H.B. Callen, Thermodynamics (Wiley, New York, 1960)

    MATH  Google Scholar 

  33. N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, R. Shirasaki, Comput. Phys. Commun. 182, 90 (2011)

    Article  ADS  MATH  Google Scholar 

  34. N. Hirayama, A. Endo, K. Fujita, Y. Hasegawa, N. Hatano, H. Nakamura, R. Shirasaki, K. Yonemitsu, J. Electron. Mater. 40, 529 (2011)

    Article  ADS  Google Scholar 

  35. G.D. Smith, Numerical Solution of Partial Differential Equations (Oxford University Press, London, 1965)

    MATH  Google Scholar 

  36. M. Metcalf, W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 90, vol. 2 (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  37. J.M. Ziman, Electrons and Phonons (Oxford University Press, Oxford, 1960)

    MATH  Google Scholar 

  38. R.F. Wick, J. Appl. Phys. 25, 741 (1954)

    Article  ADS  MATH  Google Scholar 

  39. R.W. Rendell, S.M. Girvin, Phys. Rev. B 23, 6610 (1981)

    Article  ADS  Google Scholar 

  40. J. Wakabayashi, S. Kawaji, J. Phys. Soc. Jpn. 44, 1839 (1978)

    Article  ADS  Google Scholar 

  41. B. Neudecker, K.H. Hoffmann, Solid State Commun. 62, 135 (1987)

    Article  ADS  Google Scholar 

  42. T. Nakagawa, H. Akera, H. Suzuura, in Physics of Semiconductors: 27th International Conference on the Physics of Semiconductors, ed. by J. Menendez, C.G.V. de Walle (Am. Inst. of Phys., New York, 2005), p. 553

    Google Scholar 

  43. Y. Nagai, H. Akera, H. Suzuura, in Physics of Semiconductors: 28th International Conference on the Physics of Semiconductors, ed. by W. Jantsch, F. Schaffler (Am. Inst. of Phys., New York, 2007), p. 665

    Google Scholar 

  44. G. Granger, J.P. Eisenstein, J.L. Reno, Phys. Rev. Lett. 102, 086803 (2009)

    Article  ADS  Google Scholar 

  45. H. Okumura (2000). http://oku.edu.mie-u.ac.jp/~okumura/nernst/nernst.pdf (in Japanese)

Download references

Acknowledgements

The present authors are grateful to Prof. A. Kamitani for valuable comments and are indebted to Prof. H. Okumura for his advice on the derivation for the nonlinear Poisson equations. The work is supported by Grant-in-Aid for Scientific Research (B) No. 20340101 and (C) No. 22560004 from Japan Society for the Promotion of Science, as well as by Research Fund of Tokyo University of Science, by the Izumi Science and Technology Foundation, by NINS program for cross-disciplinary study (NIFS10KEIN0160) and by the National Institutes of Natural Sciences undertaking Forming Bases for Interdisciplinary and International Research through Cooperation Across Fields of Study and Collaborative Research Program No. NIFS08KEIN0091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Endo.

Appendix: Derivation of the Nonlinear Poisson Equations (4) and (6)

Appendix: Derivation of the Nonlinear Poisson Equations (4) and (6)

In this Appendix, we present, for completeness, the derivation of the nonlinear Poisson equations (4) and (6) from the transport equations (1) and (2) in the steady-state. We basically follow the prescription presented in [26] and [45]. See also [1].

In the steady state (/∂t=0), we have, from the continuity equations,

$$ \nabla\cdot\boldsymbol{J} = 0, $$
(33)

and

$$ \nabla\cdot\boldsymbol{J_U} =\nabla\cdot( \boldsymbol{J_Q} + \phi\boldsymbol{J}) = 0. $$
(34)

Taking the divergence of Eq. (1), we have, with the aid of Eq. (33):

(35)

Noting that, under the temperature gradient ∇T, an arbitrary transport coefficient X depends on (x,y) through its temperature dependence, the gradient of X can be expressed as

(36)

We thus can rewrite Eq. (35) as follows:

(37)

Using formulas for vector operation, Eq. (37) becomes

(38)

Using further the Maxwell equation ∇×B=μ J+εμ(d E/dt)=0 in the steady state, omitting the negligibly small term μJ, Eq. (38) becomes

(39)

Similarly, the rotation of Eq. (1) gives

(40)

We thus obtain

(41)

Substituting Eq. (41) into Eq. (39), we obtain the following equation:

(42)

By substituting Eq. (6) (to be derived below) in Eq. (42), we arrive at Eq. (4).

Next, we derive the Poisson equation for T, Eq. (6). We obtain the following equation from the divergence of J U using Eqs. (33) and (34):

(43)

Using Eq. (36), we have

(44)

Using again formulas for vector operation, we rewrite the above equation as,

(45)

which reduces, with the Maxwell equation ∇×B=0, to

(46)

We substitute Eq. (1) into the above equation and obtain

(47)

By substituting Eq. (41) into Eq. (47), we arrive at Eq. (6).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirayama, N., Endo, A., Fujita, K. et al. Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field. J Low Temp Phys 172, 132–153 (2013). https://doi.org/10.1007/s10909-012-0852-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0852-8

Keywords

Navigation