Skip to main content
Log in

CuxMg(0.6)Zn(0.4)Fe2O4 Nanomaterials and Their Composite for Photocatalytic Degradation of Colored and Colorless Effluents Under Xenon Lamp

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this report, Mg(0.6)Zn(0.4)Fe2O4 (MZF) and CuxMg(0.6)Zn(0.4)Fe2O4 (CMZF) where (x = 0.2) were synthesized via sol–gel method. The composite of CuxMg(0.6)Zn(0.4)Fe2O4 with reduced graphene oxide (CuxMg(0.6)Zn(0.4)Fe2O4@rGO) was fabricated by wet chemical approach to get over the adverse impacts of toxic dyes and pathogenic bacterial strains. The rGO possesses high stability, larger surface area and an enhanced ability for electron transport during photocatalysis. X-ray diffraction, Scanning electron microscopy, Fourier transform infrared spectroscopy, Mott Schottky and UV–Visible spectroscopy were used to analyze the physiochemical properties of manufactured materials. Methylene blue (MB) and benzoic acid (BA) degradation was performed under the visible light of the Xenon lamp. The photocatalytic activity of MB exhibited degradation efficiency by MZF, CMZF, and CMZF@rGO was 16.67%, 42.72% and 76.19% respectively and degradation of BA by MZF, CMZF, and CMZF@rGO was 26.92%, 44.44% and 60.42% respectively. The composite (CMZF@rGO) exhibited the best degradation efficiency than bare and doped materials (MZF and CMZF) due to the greater surface area. As surface area increased, the e/h+ pair recombination rate decreased. Therefore, the photocatalytic efficiency of the material enhanced. It is examined, CMZF@rGO has potential applications in the photocatalytic degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. G. Nagabhushana, G. Nagaraju, G. Chandrappa, Synthesis of bismuth vanadate: its application in H2 evolution and sunlight-driven photodegradation. J. Mater. Chem. A 1, 388–394 (2013)

    Article  CAS  Google Scholar 

  2. Y. Ahmadi, N. Bhardwaj, K.-H. Kim, S. Kumar, Recent advances in photocatalytic removal of airborne pathogens in air. Sci. Total Environ. 794, 148477 (2021)

    Article  CAS  PubMed  Google Scholar 

  3. Q. Jin, S. Zhang, T. Wen, J. Wang, P. Gu, G. Zhao, X. Wang, Z. Chen, T. Hayat, X. Wang, Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix. Environ. Pollut. 243, 218–227 (2018)

    Article  CAS  PubMed  Google Scholar 

  4. A. Khataee, S. Arefi-Oskoui, B. Abdollahi, Y. Hanifehpour, S.W. Joo, Synthesis and characterization of PrxZn1xSe nanoparticles for photocatalysis of four textile dyes with different molecular structures. Res. Chem. Intermed. 41, 8425–8439 (2015)

    Article  CAS  Google Scholar 

  5. S. Yousaf, T. Kousar, M.B. Taj, P.O. Agboola, I. Shakir, M.F. Warsi, Synthesis and characterization of double heterojunction-graphene nano-hybrids for photocatalytic applications. Ceram. Int. 45, 17806–17817 (2019)

    Article  Google Scholar 

  6. M. Sillanpää, M. Shestakova, Chapter 2—electrochemical water treatment methods BT—electrochemical water treatment methods (Butterworth-Heinemann, Oxford, 2017), pp.47–130

    Book  Google Scholar 

  7. A. Najafidoust, B. Abdollahi, E.A. Asl, R. Karimi, Synthesis and characterization of novel M@ZnO/UiO-66 (M = Ni, Pt, Pd and mixed Pt&Pd) as an efficient photocatalyst under solar light. J. Mol. Struct. 1256, 132580 (2022)

    Article  CAS  Google Scholar 

  8. K. Chaudhary, N. Shaheen, S. Zulfiqar, M.I. Sarwar, M. Suleman, P.O. Agboola, I. Shakir, M.F. Warsi, Binary WO3–ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 269, 116526 (2020)

    Article  CAS  Google Scholar 

  9. A. Najafidoust, B. Abdollahi, M. Sarani, M. Darroudi, A.M. Vala, MIL-(53)Fe metal-organic framework (MOF)-based Ag2CrO4 hetrostructure with enhanced solar-light degradation of organic dyes. Opt. Mater. 125, 112108 (2022)

    Article  CAS  Google Scholar 

  10. H. Kiwaan, T. Atwee, E. Azab, A. El-Bindary, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide. J. Mol. Struct. 1200, 127115 (2020)

    Article  CAS  Google Scholar 

  11. C. Lops, A. Ancona, K. Di Cesare, B. Dumontel, N. Garino, G. Canavese, S. Hérnandez, V. Cauda, Sonophotocatalytic degradation mechanisms of Rhodamine B dye via radicals generation by micro- and nano-particles of ZnO. Appl. Catal. B 243, 629–640 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2019)

    Article  CAS  Google Scholar 

  13. M. Mahanthappa, N. Kottam, S. Yellappa, Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Appl. Surf. Sci. 475, 828–838 (2019)

    Article  CAS  Google Scholar 

  14. Q. Guo, Q. Zhang, H. Wang, Z. Zhao, ZnO2-promoted ZnO as an efficient photocatalyst for the photoreduction of carbon dioxide in the presence of water. Catal. Commun. 103, 24–28 (2018)

    Article  CAS  Google Scholar 

  15. Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2, 2915–2923 (2010)

    Article  CAS  PubMed  Google Scholar 

  16. R.B. Rajput, S.N. Jamble, R.B. Kale, A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manag. 307, 114533 (2022)

    Article  CAS  Google Scholar 

  17. H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Res. 79, 128–146 (2015)

    Article  CAS  PubMed  Google Scholar 

  18. K. Chaudhary, M. Aadil, S. Zulfiqar, S. Ullah, S. Haider, P.O. Agboola, M.F. Warsi, I. Shakir, Graphene oxide and reduced graphene oxide supported ZnO nanochips for removal of basic dyes from the industrial effluents. Fullerenes, Nanotubes, Carbon Nanostruct. 29, 915–928 (2021)

    Article  CAS  Google Scholar 

  19. M.G. Peleyeju, E.L. Viljoen, WO3-based catalysts for photocatalytic and photoelectrocatalytic removal of organic pollutants from water—a review. J. Water Process Eng. 40, 101930 (2021)

    Article  Google Scholar 

  20. Z. Zhang, G. Yi, P. Li, X. Wang, X. Wang, C. Zhang, Y. Zhang, Recent progress in engineering approach towards the design of PbO2-based electrodes for the anodic oxidation of organic pollutants. J. Water Process Eng. 42, 102173 (2021)

    Article  Google Scholar 

  21. A. Rahman, M. Aadil, M. Akhtar, M.F. Warsi, A. Jamil, I. Shakir, M. Shahid, Magnetically recyclable Ni1xCdxCeyFe2–yO4–rGO nanocomposite photocatalyst for visible light driven photocatalysis. Ceram. Int. 46, 13517–13526 (2020)

    Article  CAS  Google Scholar 

  22. B. Abdollahi, A. Najafidoust, E. Abbasi Asl, M. Sillanpaa, Fabrication of ZiF-8 metal organic framework (MOFs)-based CuO–ZnO photocatalyst with enhanced solar-light-driven property for degradation of organic dyes. Arabian J. Chem. 14, 103444 (2021)

    Article  CAS  Google Scholar 

  23. H. Li, Z. Bian, J. Zhu, Y. Huo, H. Li, Y. Lu, Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity. J. Am. Chem. Soc. 129, 4538–4539 (2007)

    Article  CAS  PubMed  Google Scholar 

  24. D. He, Y. Li, J. Wu, Y. Yang, Q. An, Carbon wrapped and doped TiO2 mesoporous nanostructure with efficient visible-light photocatalysis for NO removal. Appl. Surf. Sci. 391, 318–325 (2017)

    Article  CAS  Google Scholar 

  25. R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 3581–3599 (2013)

    Article  CAS  Google Scholar 

  26. M. Wang, J. Han, Y. Hu, R. Guo, Y. Yin, Carbon-incorporated NiO/TiO2 mesoporous shells with p–n heterojunctions for efficient visible light photocatalysis. ACS Appl. Mater. Interfaces 8, 29511–29521 (2016)

    Article  CAS  PubMed  Google Scholar 

  27. N.O. Balayeva, Z. Mamiyev, R. Dillert, N. Zheng, D.W. Bahnemann, Rh/TiO2-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination. ACS Catal. 10, 5542–5553 (2020)

    Article  CAS  Google Scholar 

  28. H. Liang, Z. Jia, H. Zhang, X. Wang, J. Wang, Photocatalysis oxidation activity regulation of Ag/TiO2 composites evaluated by the selective oxidation of Rhodamine B. Appl. Surf. Sci. 422, 1–10 (2017)

    Article  CAS  Google Scholar 

  29. T. Tahir, K. Chaudhary, M.F. Warsi, M.S. Saif, I.A. Alsafari, I. Shakir, P.O. Agboola, S. Haider, S. Zulfiqar, Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceram. Int. 48, 1969–1980 (2022)

    Article  CAS  Google Scholar 

  30. Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core–shell CuFe2O4@ C3N4 hybrids for visible light photocatalysis of Orange II. J. Hazard. Mater. 297, 224–233 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. J. Song, D. Su, X. Xie, X. Guo, W. Bao, G. Shao, G. Wang, Immobilizing Polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016)

    Article  CAS  PubMed  Google Scholar 

  32. R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, C.R. Santillán-Rodríguez, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, M. Miki-Yoshida, R. Martínez-Sánchez, Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technol. 212, 390–396 (2011)

    Article  Google Scholar 

  33. P. Niu, J. Dai, X. Zhi, Z. Xia, S. Wang, L. Li, Photocatalytic overall water splitting by graphitic carbon nitride. InfoMat 3, 931–961 (2021)

    Article  CAS  Google Scholar 

  34. B. Abdollahi, S. Farshnama, E. Abbasi Asl, A. Najafidoust, M. Sarani, Cu(BDC) metal–organic framework (MOF)-based Ag2CrO4 heterostructure with enhanced solar-light degradation of organic dyes. Inorg. Chem. Commun. 138, 109236 (2022)

    Article  CAS  Google Scholar 

  35. T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, optical, and magnetic properties of Zn-doped CoFe2O4 nanoparticles. Nanoscale Res. Lett. 12, 141 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Vadivel, R.R. Babu, K. Ramamurthi, M. Arivanandhan, CTAB cationic surfactant assisted synthesis of CoFe2O4 magnetic nanoparticles. Ceram. Int. 42, 19320–19328 (2016)

    Article  CAS  Google Scholar 

  37. A. Franco, H.V.S. Pessoni, F.O. Neto, Enhanced high temperature magnetic properties of ZnO−CoFe2O4 ceramic composite. J. Alloy. Compd. 680, 198–205 (2016)

    Article  CAS  Google Scholar 

  38. S. Huang, Y. Xu, M. Xie, H. Xu, M. He, J. Xia, L. Huang, H. Li, Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids Surf., A 478, 71–80 (2015)

    Article  CAS  Google Scholar 

  39. J. Arshad, F.M.A. Alzahrani, S. Munir, U. Younis, M.S. Al-Buriahi, Z.A. Alrowaili, M.F. Warsi, Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid. Ceram. Int. 49, 18988 (2023)

    Article  CAS  Google Scholar 

  40. H. Chakhtouna, H. Benzeid, N. Zari, A.E.K. Qaiss, R. Bouhfid, Recent progress on Ag/TiO2 photocatalysts: photocatalytic and bactericidal behaviors. Environ. Sci. Pollut. Res. 28, 44638–44666 (2021)

    Article  CAS  Google Scholar 

  41. A. Kumar, S. Kumar, A. Bahuguna, A. Kumar, V. Sharma, V. Krishnan, Recyclable, bifunctional composites of perovskite type N-CaTiO3 and reduced graphene oxide as an efficient adsorptive photocatalyst for environmental remediation. Mater. Chem. Front. 1, 2391–2404 (2017)

    Article  CAS  Google Scholar 

  42. A. Irshad, F. Farooq, M. Farooq Warsi, N. Shaheen, A.Y. Elnaggar, E.E. Hussein, Z.M. El-Bahy, M. Shahid, Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds. FlatChem 31, 100325 (2022)

    Article  CAS  Google Scholar 

  43. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958)

    Article  CAS  Google Scholar 

  44. M. Anwar, E.W. Cochran, S. Zulfiqar, M.F. Warsi, I. Shakir, K. Chaudhary, In-situ fabricated copper-holmium co-doped cobalt ferrite nanocomposite with cross-linked graphene as novel electrode material for supercapacitor application. J. Energy Storage 72, 108438 (2023)

    Article  Google Scholar 

  45. M. Anwar, K.S. Alghamdi, S. Zulfiqar, M.F. Warsi, M. Waqas, M. Hasan, Ag-decorated BiOCl anchored onto the g-C3N4 sheets for boosted photocatalytic and antimicrobial activities. Opt. Mater. 135, 113336 (2023)

    Article  CAS  Google Scholar 

  46. S.N.S. Nasir, N.A. Mohamed, M.A. Tukimon, M.F.M. Noh, N.A. Arzaee, M.A.M. Teridi, Direct extrapolation techniques on the energy band diagram of BiVO4 thin films. Phys. B 604, 412719 (2021)

    Article  CAS  Google Scholar 

  47. K.-H. Ye, X. Yu, Z. Qiu, Y. Zhu, X. Lu, Y. Zhang, Facile synthesis of bismuth oxide/bismuth vanadate heterostructures for efficient photoelectrochemical cells. RSC Adv. 5, 34152–34156 (2015)

    Article  CAS  Google Scholar 

  48. A. Farooq, M. Anwar, H.H. Somaily, S. Zulfiqar, M.F. Warsi, M.I. Din, A. Muhammad, A. Irshad, Fabrication of Ag-doped magnesium aluminate/ rGO composite: a highly efficient photocatalyst for visible light-driven photodegradation of crystal violet and phenol. Phys. B 650, 414508 (2023)

    Article  CAS  Google Scholar 

  49. N. Shaheen, M.F. Warsi, S. Zulfiqar, M. Waqas, I.A. Alsafari, A. Jamil, M. Shahid, Carbon coated tungsten doped molybdenum oxide nanowires and their composite with graphitic carbon nitride for photocatalysis and antibacterial studies. Ceram. Int. 49, 6906–6922 (2023)

    Article  CAS  Google Scholar 

  50. J. Arshad, F.M.A. Alzahrani, S. Munir, U. Younis, M.S. Al-Buriahi, Z.A. Alrowaili, M.F. Warsi, Integration of 2D graphene oxide sheets with MgFe2O4/ZnO heterojunction for improved photocatalytic degradation of organic dyes and benzoic acid. Ceram. Int. 49, 18988–19002 (2023)

    Article  CAS  Google Scholar 

  51. Q. Xiang, J. Yu, M. Jaroniec, Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782–796 (2012)

    Article  CAS  PubMed  Google Scholar 

  52. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2024R42), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Fatimah Mohammed A. Alzahrani and Sajida Parveen- writing the original manuscript, Edit and Review. Z. A. Alrowaili and M. S. Al-Buriahi- Resources and formal analysis. Alina Manzoor- Methodology Mamoona Anwar- Data curation, Edit and Review Muhammad Suleman- Validation and supervision. All mentioned authors read and reviewed the whole manuscript.

Corresponding authors

Correspondence to Mamoona Anwar or Muhammad Suleman.

Ethics declarations

Competing Interests

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, F.M.A., Parveen, S., Alrowaili, Z.A. et al. CuxMg(0.6)Zn(0.4)Fe2O4 Nanomaterials and Their Composite for Photocatalytic Degradation of Colored and Colorless Effluents Under Xenon Lamp. J Inorg Organomet Polym (2024). https://doi.org/10.1007/s10904-024-03040-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10904-024-03040-4

Keywords

Navigation