Skip to main content
Log in

MOF-Based Nanoarchitectonics for Lithium-Ion Batteries: A Comprehensive Review

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Metal–organic frameworks (MOFs) contain a large surface area, a flexible structure, well organised pores, and homogeneous metal sites, making them promising models for nanostructured materials such carbon-based porous materials, metal oxides, phosphides, and carbides, and their composites. In addition, it has been shown that all of these MOF-produced nanomaterials perform exceptionally well in electrolytic power storage and transformation systems, particularly lithium and sodium ion batteries. Lithium-ion batteries (LIBs) with impressive performance have become an essential part of the electronics industry. High surface area MOFs with adaptable chemical structures and simple changes have been widely used in numerous applications, including gas absorption, drug delivery, and sensors. MOFs and their derivatives have also been utilised as efficient electrode components for LIBs. The present article first reviews the purpose of LIBs along with their foundations. Later, cutting-edge research on individual MOFs, composites based on MOFs, and products deriving from MOFs (metal, oxides and sulphides of metal) for LIB electrode materials is covered. Important process of synthesis and characterization methods for MOF based nanostructure materials are discussed in this review article. Finally, a brief discussion is made about the applications restrictions and potential future applications for the use of MOFs in LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Reproduced from ref. [39]

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Bin Wu and X. W. (David) Lou, Sci. Adv (2017). https://doi.org/10.1126/sciadv.aap9252.

  2. H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1(3), 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008

    Article  CAS  Google Scholar 

  3. L. L. Gaines and J. B. Dunn, “Lithium-Ion Battery Environmental Impacts,” in Lithium-Ion Batteries, Elsevier, 2014, pp. 483–508. doi: https://doi.org/10.1016/B978-0-444-59513-3.00021-2.

  4. Y. Arinicheva et al., “Ceramics for electrochemical storage,” in Advanced Ceramics for Energy Conversion and Storage, Elsevier, 2020, pp. 549–709. doi: https://doi.org/10.1016/B978-0-08-102726-4.00010-7.

  5. P.K. Nayak, L. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew. Chemie Int. Ed. 57(1), 102–120 (2018). https://doi.org/10.1002/anie.201703772

    Article  CAS  Google Scholar 

  6. A. Tang et al., UiO-66 metal-organic framework as an anode for a potassium-ion battery: quantum mechanical analysis. J. Phys. Chem. C 125(18), 9679–9687 (2021). https://doi.org/10.1021/acs.jpcc.1c01657

    Article  CAS  Google Scholar 

  7. M. Mechili, C. Vaitsis, N. Argirusis, P.K. Pandis, G. Sourkouni, C. Argirusis, Research progress in transition metal oxide based bifunctional electrocatalysts for aqueous electrically rechargeable zinc-air batteries. Renew. Sustain. Energy Rev. 156, 111970 (2022). https://doi.org/10.1016/j.rser.2021.111970

    Article  CAS  Google Scholar 

  8. W.-J. Kwak et al., Lithium–oxygen batteries and related systems: potential, status, and future. Chem. Rev. 120(14), 6626–6683 (2020). https://doi.org/10.1021/acs.chemrev.9b00609

    Article  CAS  PubMed  Google Scholar 

  9. K. Park, D. Yeon, J.H. Kim, J.-H. Park, S. Doo, B. Choi, Spinel-embedded lithium-rich oxide composites for Li-ion batteries. J. Power. Sources 360, 453–459 (2017). https://doi.org/10.1016/j.jpowsour.2017.06.034

    Article  CAS  Google Scholar 

  10. H. Huang, E. Kelder, J. Schoonman, Graphite–metal oxide composites as anode for Li-ion batteries. J. Power. Sources 97–98, 114–117 (2001). https://doi.org/10.1016/S0378-7753(01)00597-3

    Article  Google Scholar 

  11. X. Cai, L. Lai, Z. Shen, J. Lin, Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J. Mater. Chem. A 5(30), 15423–15446 (2017). https://doi.org/10.1039/C7TA04354F

    Article  CAS  Google Scholar 

  12. J. Lee, J. Kim, T. Hyeon, Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18(16), 2073–2094 (2006). https://doi.org/10.1002/adma.200501576

    Article  CAS  Google Scholar 

  13. S. Sundriyal, M. Sharma, A. Kaur, S. Mishra, A. Deep, Improved electrochemical performance of rGO/TiO2 nanosheet composite based electrode for supercapacitor applications. J. Mater. Sci. Mater. Electron. 29(15), 12754–12764 (2018). https://doi.org/10.1007/s10854-018-9393-5

    Article  CAS  Google Scholar 

  14. A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131(2), 458–460 (2009). https://doi.org/10.1021/ja808853q

    Article  CAS  PubMed  Google Scholar 

  15. F.R. Fortea-Pérez et al., The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16(7), 760–766 (2017). https://doi.org/10.1038/nmat4910

    Article  CAS  PubMed  Google Scholar 

  16. P. Horcajada et al., Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9(2), 172–178 (2010). https://doi.org/10.1038/nmat2608

    Article  CAS  PubMed  Google Scholar 

  17. H. He et al., Polarized three-photon-pumped laser in a single MOF microcrystal. Nat. Commun. 7(1), 11087 (2016). https://doi.org/10.1038/ncomms11087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. W. Liu, X.-B. Yin, Metal–organic frameworks for electrochemical applications. TrAC Trends Anal. Chem. 75, 86–96 (2016). https://doi.org/10.1016/j.trac.2015.07.011

    Article  CAS  Google Scholar 

  19. S.B. Kim, J.Y. Kim, N.C. Jeong, K.M. Ok, Anisotropic Li + ion conductivity in a large single crystal of a Co( iii ) coordination complex. Inorg. Chem. Front. 4(1), 79–83 (2017). https://doi.org/10.1039/C6QI00314A

    Article  CAS  Google Scholar 

  20. S. Hwang, E.J. Lee, D. Song, N.C. Jeong, High proton mobility with high directionality in isolated channels of MOF-74. ACS Appl. Mater. Interfaces 10(41), 35354–35360 (2018). https://doi.org/10.1021/acsami.8b11816

    Article  CAS  PubMed  Google Scholar 

  21. W. Li et al., Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv. Mater. 29(16), 1605820 (2017). https://doi.org/10.1002/adma.201605820

    Article  CAS  Google Scholar 

  22. Y. Guo et al., Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl. Mater. Interfaces 9(20), 17172–17177 (2017). https://doi.org/10.1021/acsami.7b04561

    Article  CAS  PubMed  Google Scholar 

  23. G. Fang et al., MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26, 57–65 (2016). https://doi.org/10.1016/j.nanoen.2016.05.009

    Article  CAS  Google Scholar 

  24. J. Liu et al., MOF-derived hollow Co 9 S 8 nanoparticles embedded in graphitic carbon nanocages with superior li-ion storage. Small 12(17), 2354–2364 (2016). https://doi.org/10.1002/smll.201503821

    Article  CAS  PubMed  Google Scholar 

  25. Y. Zhao, X. Li, J. Liu, C. Wang, Y. Zhao, G. Yue, MOF-Derived ZnO/Ni 3 ZnC 0.7 /C hybrids yolk-shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl. Mater. Interfaces 8(10), 6472–6480 (2016). https://doi.org/10.1021/acsami.5b12562

    Article  CAS  PubMed  Google Scholar 

  26. G.N. Lewis, F.G. Keyes, J. Am. Chem. Soc. 35(4), 340–344 (1913). https://doi.org/10.1021/ja02193a004

    Article  CAS  Google Scholar 

  27. R. M. . S. R.G, H. K.R, “Research and development of a high capacity nonaqueous secondary battery”.

  28. D.R. Vissers, Z. Tomczuk, R.K. Steunenberg, J. Electrochem. Soc. 121(5), 665 (1974). https://doi.org/10.1149/1.2401882

    Article  CAS  Google Scholar 

  29. E.C. Gay, D.R. Vissers, F.J. Martino, K.E. Anderson, J. Electrochem. Soc. 123(11), 1591–1596 (1976). https://doi.org/10.1149/1.2132652

    Article  CAS  Google Scholar 

  30. J.-M. Lim, T. Hwang, D. Kim, M.-S. Park, K. Cho, M. Cho, Sci. Rep. (2017). https://doi.org/10.1038/srep39669

    Article  PubMed  PubMed Central  Google Scholar 

  31. A. Eftekhari, LiFePO4/C nanocomposites for lithium-ion batteries. J. Power. Sources 343, 395–411 (2017). https://doi.org/10.1016/j.jpowsour.2017.01.080

    Article  CAS  Google Scholar 

  32. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power. Sources 100(1–2), 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4

    Article  CAS  Google Scholar 

  33. J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013). https://doi.org/10.1021/ja3091438

    Article  CAS  PubMed  Google Scholar 

  34. P. Verma, P. Maire, P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55(22), 6332–6341 (2010). https://doi.org/10.1016/j.electacta.2010.05.072

    Article  CAS  Google Scholar 

  35. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8(6), 500–506 (2009). https://doi.org/10.1038/nmat2460

    Article  CAS  PubMed  Google Scholar 

  36. J. Ruska, M; Kiviluoma, “Renewable electricity in Europe. Current state, drivers, and scenarios for 2020”.

  37. J. He, A. Manthiram, A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 20, 55–70 (2019). https://doi.org/10.1016/j.ensm.2019.04.038

    Article  Google Scholar 

  38. Z.-L. Wang, D. Xu, J.-J. Xu, L.-L. Zhang, X.-B. Zhang, Adv. Funct. Mater. 22(17), 3699–3705 (2012). https://doi.org/10.1002/adfm.201200403

    Article  CAS  Google Scholar 

  39. L. Zhu et al., A lightweight and low-cost electrode for lithium-ion batteries derived from paper towel supported MOF arrays. Chem. Commun. 56(43), 5847–5850 (2020). https://doi.org/10.1039/D0CC01599G

    Article  CAS  Google Scholar 

  40. N. Kittner, F. Lill, D.M. Kammen, Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2(9), 17125 (2017). https://doi.org/10.1038/nenergy.2017.125

    Article  Google Scholar 

  41. X. Li, F. Cheng, S. Zhang, J. Chen, Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2. J. Power. Sources 160(1), 542–547 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.015

    Article  CAS  Google Scholar 

  42. Y. Jin, C. Zhao, Y. Lin, D. Wang, L. Chen, C. Shen, Fe-based metal-organic framework and its derivatives for reversible lithium storage. J. Mater. Sci. Technol. 33(8), 768–774 (2017). https://doi.org/10.1016/j.jmst.2016.11.021

    Article  CAS  Google Scholar 

  43. J. Qi, P. Wang, Y. Yan, X. Zheng, J. Cao, J. Feng, MCo2O4 (M=Co, Mn, Ni, Zn) nanosheet arrays constructed by two-dimension metal-organic frameworks as binder-free electrodes for lithium-ion batteries. Vacuum 169, 108959 (2019). https://doi.org/10.1016/j.vacuum.2019.108959

    Article  CAS  Google Scholar 

  44. J. Zhang, Z. Liu, D. Cai, H. Zhan, Metal-organic framework-engaged synthesis of multicomponent MoO2@CoO-CoMoO4-NC hybrid nanorods as promising anode materials for lithium-ion batteries. Mater. Lett. 254, 129–132 (2019). https://doi.org/10.1016/j.matlet.2019.07.054

    Article  CAS  Google Scholar 

  45. J. Wang, X. Zhao, Metal-organic-framework-derived CoP nanoparticles-embedded into carbon nanocages for high-performance lithium-ion battery. Mater. Lett. 290, 129454 (2021). https://doi.org/10.1016/j.matlet.2021.129454

    Article  CAS  Google Scholar 

  46. C.M. Laureano-Anzaldo, J.R. Robledo-Ortíz, R. Manríquez-González, Zwitterionic cellulose as a promising sorbent for anionic and cationic dyes. Mater. Lett. 300, 130236 (2021). https://doi.org/10.1016/j.matlet.2021.130236

    Article  CAS  Google Scholar 

  47. Z. Yan et al., Metal-organic frameworks-derived CoMOF-D@Si@C core-shell structure for high-performance lithium-ion battery anode. Electrochim. Acta 390, 138814 (2021). https://doi.org/10.1016/j.electacta.2021.138814

    Article  CAS  Google Scholar 

  48. L. Zhang, H. Liu, W. Shi, P. Cheng, Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries. Coord. Chem. Rev. 388, 293–309 (2019). https://doi.org/10.1016/j.ccr.2019.02.030

    Article  CAS  Google Scholar 

  49. H. Pang, B. Guan, W. Sun, Y. Wang, Metal-organic-frameworks derivation of mesoporous NiO nanorod for high-performance lithium ion batteries. Electrochim. Acta 213, 351–357 (2016). https://doi.org/10.1016/j.electacta.2016.06.163

    Article  CAS  Google Scholar 

  50. G. Zou et al., Metal-organic framework-derived materials for sodium energy storage. Small 14(3), 1702648 (2018). https://doi.org/10.1002/smll.201702648

    Article  CAS  Google Scholar 

  51. S. Dang, Q.-L. Zhu, Q. Xu, Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 3(1), 17075 (2017). https://doi.org/10.1038/natrevmats.2017.75

    Article  CAS  Google Scholar 

  52. Y. Nishi, The development of lithium ion secondary batteries. Chem. Rec. 1(5), 406–413 (2001). https://doi.org/10.1002/tcr.1024

    Article  CAS  PubMed  Google Scholar 

  53. N. Mahmood, T. Tang, Y. Hou, Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv. Energy Mater. 6(17), 1600374 (2016). https://doi.org/10.1002/aenm.201600374

    Article  CAS  Google Scholar 

  54. M. Zhong, D. Yang, C. Xie, Z. Zhang, Z. Zhou, X.-H. Bu, Yolk-shell MnO@ZnMn 2 O 4 /N-C nanorods derived from α -MnO 2 /ZIF-8 as anode materials for lithium ion batteries. Small 12(40), 5564–5571 (2016). https://doi.org/10.1002/smll.201601959

    Article  CAS  PubMed  Google Scholar 

  55. J.P. Zhu, X.H. Wang, X.X. Zuo, The application of metal-organic frameworks in electrode materials for lithium–ion and lithium–sulfur batteries. R. Soc. Open Sci. 6(7), 190634 (2019). https://doi.org/10.1098/rsos.190634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. B. Liu, X. Zhang, H. Shioyama, T. Mukai, T. Sakai, Q. Xu, Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. J. Power. Sources 195(3), 857–861 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.058

    Article  CAS  Google Scholar 

  57. Y. Han et al., MOF-derived porous hollow Co 3 O 4 parallelepipeds for building high-performance Li-ion batteries. J. Mater. Chem. A 3(45), 22542–22546 (2015). https://doi.org/10.1039/C5TA06205E

    Article  CAS  Google Scholar 

  58. A. Li et al., Facile synthesis of Co 3 O 4 nanosheets from MOF nanoplates for high performance anodes of lithium-ion batteries. Inorg. Chem. Front. 5(7), 1602–1608 (2018). https://doi.org/10.1039/C8QI00196K

    Article  CAS  Google Scholar 

  59. H. Li, M. Liang, W. Sun, Y. Wang, Bimetal-organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv. Funct. Mater. 26(7), 1098–1103 (2016). https://doi.org/10.1002/adfm.201504312

    Article  CAS  Google Scholar 

  60. G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, K. Sun, A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes. J. Power. Sources 389, 8–12 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.001

    Article  CAS  Google Scholar 

  61. Z. Bai, Y. Zhang, Y. Zhang, C. Guo, B. Tang, D. Sun, MOFs-derived porous Mn 2 O 3 as high-performance anode material for Li-ion battery. J. Mater. Chem. A 3(10), 5266–5269 (2015). https://doi.org/10.1039/C4TA06292B

    Article  CAS  Google Scholar 

  62. Y. Xia, B. Wang, G. Wang, X. Liu, H. Wang, MOF-derived porous Ni x Fe 3–x O 4 nanotubes with excellent performance in lithium-ion batteries. ChemElectroChem 3(2), 299–308 (2016). https://doi.org/10.1002/celc.201500419

    Article  CAS  Google Scholar 

  63. L. Zhang, H. Bin Wu, R. Xu, and X. W. (David) Lou, “Porous Fe2O3 nanocubes derived from MOFs for highly reversible lithium storage,” CrystEngComm, vol. 15, no. 45, p. 9332, 2013, doi: https://doi.org/10.1039/c3ce40996a.

  64. Q. Li, G. Huang, D. Yin, Y. Wu, L. Wang, Synthesis of porous NiO nanorods as high-performance anode materials for lithium-ion batteries. Part. Part. Syst. Charact. 33(10), 764–770 (2016). https://doi.org/10.1002/ppsc.201600084

    Article  CAS  Google Scholar 

  65. W. Zhang, H. Pang, W. Sun, L.-P. Lv, Y. Wang, Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochem. Commun. 84, 80–85 (2017). https://doi.org/10.1016/j.elecom.2017.09.019

    Article  CAS  Google Scholar 

  66. Z. Xiu et al., Hierarchical porous anatase TiO 2 derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chem. Commun. 51(61), 12274–12277 (2015). https://doi.org/10.1039/C5CC03381K

    Article  CAS  Google Scholar 

  67. X. Xu, R. Cao, S. Jeong, J. Cho, Nano Lett. 12(9), 4988–4991 (2012). https://doi.org/10.1021/nl302618s

    Article  CAS  PubMed  Google Scholar 

  68. A. Banerjee, V. Aravindan, S. Bhatnagar, D. Mhamane, S. Madhavi, S. Ogale, Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy 2(5), 890–896 (2013). https://doi.org/10.1016/j.nanoen.2013.03.006

    Article  CAS  Google Scholar 

  69. F. Zheng, D. Zhu, X. Shi, Q. Chen, Metal–organic framework-derived porous Mn 1.8 Fe 1.2 O 4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 3(6), 2815–2824 (2015). https://doi.org/10.1039/C4TA06150K

    Article  CAS  Google Scholar 

  70. G. Huang, L. Zhang, F. Zhang, L. Wang, Metal–organic framework derived Fe 2 O 3 @NiCo 2 O 4 porous nanocages as anode materials for Li-ion batteries. Nanoscale 6(10), 5509–5515 (2014). https://doi.org/10.1039/C3NR06041A

    Article  CAS  PubMed  Google Scholar 

  71. S.-K. Park, J.K. Kim, Y.C. Kang, Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem. Eng. J. 328, 546–555 (2017). https://doi.org/10.1016/j.cej.2017.07.079

    Article  CAS  Google Scholar 

  72. C. Sun et al., MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J. Mater. Chem. A 3(16), 8483–8488 (2015). https://doi.org/10.1039/C5TA00455A

    Article  CAS  Google Scholar 

  73. H. Cao et al., Metal-organic-framework-derived two-dimensional ultrathin mesoporous hetero-ZnFe 2 O 4 /ZnO nanosheets with enhanced lithium storage properties for Li-ion batteries. Nanotechnology 27(46), 465402 (2016). https://doi.org/10.1088/0957-4484/27/46/465402

    Article  CAS  PubMed  Google Scholar 

  74. Y. Han et al., Chem. - A Eur. J. 24(7), 1651–1656 (2018). https://doi.org/10.1002/chem.201704416

    Article  CAS  Google Scholar 

  75. L.-L. Wu et al., Multishelled Ni x Co 3–x O 4 hollow microspheres derived from bimetal-organic frameworks as anode materials for high-performance lithium-ion batteries. Small 13(17), 1604270 (2017). https://doi.org/10.1002/smll.201604270

    Article  CAS  Google Scholar 

  76. J. Wang, H. Zhou, M. Zhu, A. Yuan, X. Shen, Metal-organic framework-derived Co3O4 covered by MoS2 nanosheets for high-performance lithium-ion batteries. J. Alloys Compd. 744, 220–227 (2018). https://doi.org/10.1016/j.jallcom.2018.02.086

    Article  CAS  Google Scholar 

  77. Y. Chen et al., Cyanide-metal framework derived CoMoO 4 /Co 3 O 4 hollow porous octahedrons as advanced anodes for high performance lithium ion batteries. J. Mater. Chem. A 6(3), 1048–1056 (2018). https://doi.org/10.1039/C7TA08868J

    Article  CAS  Google Scholar 

  78. V. Soundharrajan et al., Co 3 V 2 O 8 sponge network morphology derived from metal-organic framework as an excellent lithium storage anode material. ACS Appl. Mater. Interfaces 8(13), 8546–8553 (2016). https://doi.org/10.1021/acsami.6b01047

    Article  CAS  PubMed  Google Scholar 

  79. J. Shao et al., Metal organic frameworks-derived Co 3 O 4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2(31), 12194–12200 (2014). https://doi.org/10.1039/C4TA01966K

    Article  CAS  Google Scholar 

  80. D. Tian, X.-L. Zhou, Y.-H. Zhang, Z. Zhou, X.-H. Bu, Inorg. Chem. 54(17), 8159–8161 (2015). https://doi.org/10.1021/acs.inorgchem.5b00544

    Article  CAS  PubMed  Google Scholar 

  81. C. Li et al., Mesoporous nanostructured Co 3 O 4 derived from MOF template: a high-performance anode material for lithium-ion batteries. J. Mater. Chem. A 3(10), 5585–5591 (2015). https://doi.org/10.1039/C4TA06914E

    Article  CAS  Google Scholar 

  82. Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 14(25), 1704435 (2018). https://doi.org/10.1002/smll.201704435

    Article  CAS  Google Scholar 

  83. G. Zhang et al., Adv. Mater. 27(14), 2400–2405 (2015). https://doi.org/10.1002/adma.201405222

    Article  CAS  PubMed  Google Scholar 

  84. Z. Xiu et al., MOF-derived mesoporous anatase TiO2 as anode material for lithium–ion batteries with high rate capability and long cycle stability. J. Alloys Compd. 674, 174–178 (2016). https://doi.org/10.1016/j.jallcom.2016.02.238

    Article  CAS  Google Scholar 

  85. C. Zhou et al., A robust electrospun separator modified with in situ grown metal-organic frameworks for lithium-sulfur batteries. Chem. Eng. J. 395, 124979 (2020). https://doi.org/10.1016/j.cej.2020.124979

    Article  CAS  Google Scholar 

  86. K. Cao et al., Adv. Sci. 3(3), 1500185 (2016). https://doi.org/10.1002/advs.201500185

    Article  CAS  Google Scholar 

  87. A. Banerjee, U. Singh, V. Aravindan, M. Srinivasan, S. Ogale, Synthesis of CuO nanostructures from Cu-based metal organic framework (MOF-199) for application as anode for Li-ion batteries. Nano Energy 2(6), 1158–1163 (2013). https://doi.org/10.1016/j.nanoen.2013.04.008

    Article  CAS  Google Scholar 

  88. Y. Guo, G. Qin, E. Liang, M. Li, C. Wang, MOFs-derived MgFe2O4 microboxes as anode material for lithium-ion batteries with superior performance. Ceram. Int. 43(15), 12519–12525 (2017). https://doi.org/10.1016/j.ceramint.2017.06.124

    Article  CAS  Google Scholar 

  89. M. Du, D. He, Y. Lou, J. Chen, Porous nanostructured ZnCo 2 O 4 derived from MOF-74: High-performance anode materials for lithium ion batteries. J. Energy Chem. 26(4), 673–680 (2017). https://doi.org/10.1016/j.jechem.2017.02.001

    Article  Google Scholar 

  90. G. Huang, F. Zhang, L. Zhang, X. Du, J. Wang, L. Wang, Hierarchical NiFe 2 O 4 /Fe 2 O 3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J. Mater. Chem. A 2(21), 8048–8053 (2014). https://doi.org/10.1039/C4TA00200H

    Article  CAS  Google Scholar 

  91. F. Zheng, Y. Yang, Q. Chen, High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5(1), 5261 (2014). https://doi.org/10.1038/ncomms6261

    Article  CAS  PubMed  Google Scholar 

  92. M. Zhong, D.-H. Yang, L.-J. Kong, W. Shuang, Y.-H. Zhang, X.-H. Bu, Bimetallic metal–organic framework derived Co 3 O 4 –CoFe 2 O 4 composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalt. Trans. 46(45), 15947–15953 (2017). https://doi.org/10.1039/C7DT03047A

    Article  CAS  Google Scholar 

  93. L. Wang, Y. Han, X. Feng, J. Zhou, P. Qi, B. Wang, Metal–organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 307, 361–381 (2016). https://doi.org/10.1016/j.ccr.2015.09.002

    Article  CAS  Google Scholar 

  94. C. Zhang et al., Porous Fe 2 O 3 /ZnO composite derived from MOFs as an anode material for lithium ion batteries. Ceram. Int. 42(1), 1044–1049 (2016). https://doi.org/10.1016/j.ceramint.2015.09.028

    Article  CAS  Google Scholar 

  95. W. Yang, X. Li, Y. Li, R. Zhu, H. Pang, Adv. Mater. (2018). https://doi.org/10.1002/adma.201804740

    Article  PubMed  PubMed Central  Google Scholar 

  96. B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130(16), 5390–5391 (2008). https://doi.org/10.1021/ja7106146

    Article  CAS  PubMed  Google Scholar 

  97. H.-J. Peng, G.-X. Hao, Z.-H. Chu, Y.-W. Lin, X.-M. Lin, Y.-P. Cai, Porous carbon with large surface area derived from a metal–organic framework as a lithium-ion battery anode material. RSC Adv. 7(54), 34104–34109 (2017). https://doi.org/10.1039/C7RA05090A

    Article  CAS  Google Scholar 

  98. Z. Xie et al., ACS Appl. Mater. Interfaces 8(16), 10324–10333 (2016). https://doi.org/10.1021/acsami.6b01430

    Article  CAS  PubMed  Google Scholar 

  99. Y. Tong et al., Nitrogen-doped carbon composites derived from 7,7,8,8-tetracyanoquinodimethane-based metal–organic frameworks for supercapacitors and lithium-ion batteries. RSC Adv. 7(40), 25182–25190 (2017). https://doi.org/10.1039/C7RA02543B

    Article  CAS  Google Scholar 

  100. A. Li et al., MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Sci. Rep. 7(1), 40574 (2017). https://doi.org/10.1038/srep40574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. X. Liu, S. Zhang, Y. Xing, S. Wang, P. Yang, H. Li, MOF-derived, N-doped porous carbon coated graphene sheets as high-performance anodes for lithium-ion batteries. New J. Chem. 40(11), 9679–9683 (2016). https://doi.org/10.1039/C6NJ01896C

    Article  CAS  Google Scholar 

  102. C. Shen, C. Zhao, F. Xin, C. Cao, W.-Q. Han, Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries. Electrochim. Acta 180, 852–857 (2015). https://doi.org/10.1016/j.electacta.2015.09.036

    Article  CAS  Google Scholar 

  103. S.J. Yang et al., J. Am. Chem. Soc. 135(20), 7394–7397 (2013). https://doi.org/10.1021/ja311550t

    Article  CAS  PubMed  Google Scholar 

  104. G. Xia, J. Su, M. Li, P. Jiang, Y. Yang, Q. Chen, A MOF-derived self-template strategy toward cobalt phosphide electrodes with ultralong cycle life and high capacity. J. Mater. Chem. A 5(21), 10321–10327 (2017). https://doi.org/10.1039/C7TA02600E

    Article  CAS  Google Scholar 

  105. F. Zou et al., ACS Nano 10(1), 377–386 (2016). https://doi.org/10.1021/acsnano.5b05041

    Article  CAS  PubMed  Google Scholar 

  106. R. Dai, W. Sun, Y. Wang, Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries. Electrochim. Acta 217, 123–131 (2016). https://doi.org/10.1016/j.electacta.2016.08.051

    Article  CAS  Google Scholar 

  107. Z. Li, M. Song, W. Zhu, W. Zhuang, X. Du, L. Tian, MOF-derived hollow heterostructures for advanced electrocatalysis. Coord. Chem. Rev. 439, 213946 (2021). https://doi.org/10.1016/j.ccr.2021.213946

    Article  CAS  Google Scholar 

  108. D. Wang et al., MOF-derived Zn–Mn mixed oxides@carbon hollow disks with robust hierarchical structure for high-performance lithium-ion batteries. J. Mater. Chem. A 6(7), 2974–2983 (2018). https://doi.org/10.1039/C7TA10154F

    Article  CAS  Google Scholar 

  109. S. Niu, Z. Wang, T. Zhou, M. Yu, M. Yu, J. Qiu, A polymetallic metal-organic framework-derived strategy toward synergistically multidoped metal oxide electrodes with ultralong cycle life and high volumetric capacity. Adv. Funct. Mater. 27(5), 1605332 (2017). https://doi.org/10.1002/adfm.201605332

    Article  CAS  Google Scholar 

  110. Y. Wang, M. Kong, Z. Liu, C. Lin, Y. Zeng, Morella-rubra -like metal–organic-framework-derived multilayered Co 3 O 4 /NiO/C hybrids as high-performance anodes for lithium storage. J. Mater. Chem. A 5(46), 24269–24274 (2017). https://doi.org/10.1039/C7TA08264A

    Article  CAS  Google Scholar 

  111. Q. He et al., Solvent-free synthesis of uniform MOF shell-derived carbon confined SnO 2 /Co nanocubes for highly reversible lithium storage. Small 13(37), 1701504 (2017). https://doi.org/10.1002/smll.201701504

    Article  CAS  Google Scholar 

  112. F. Zheng, Z. Yin, H. Xia, G. Bai, Y. Zhang, Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem. Eng. J. 327, 474–480 (2017). https://doi.org/10.1016/j.cej.2017.06.097

    Article  CAS  Google Scholar 

  113. W. Song et al., Enhancing distorted metal-organic framework-derived ZnO as anode material for lithium storage by the addition of Ag 2 S quantum dots. ACS Appl. Mater. Interfaces 9(43), 37823–37831 (2017). https://doi.org/10.1021/acsami.7b12661

    Article  CAS  PubMed  Google Scholar 

  114. R. Tian et al., MOF-derived hollow Co 3 S 4 quasi-polyhedron/MWCNT nanocomposites as electrodes for advanced lithium ion batteries and supercapacitors. ACS Appl. Energy Mater. 1(2), 402–410 (2018). https://doi.org/10.1021/acsaem.7b00072

    Article  CAS  Google Scholar 

  115. Y. Xu, S. Hou, G. Yang, T. Lu, L. Pan, NiO/CNTs derived from metal-organic frameworks as superior anode material for lithium-ion batteries. J. Solid State Electrochem. 22(3), 785–795 (2018). https://doi.org/10.1007/s10008-017-3811-0

    Article  CAS  Google Scholar 

  116. H. Yang, K. Zhang, Y. Wang, C. Yan, S. Lin, CoFe2O4 derived-from bi-metal organic frameworks wrapped with graphene nanosheets as advanced anode for high-performance lithium ion batteries. J. Phys. Chem. Solids 115, 317–321 (2018). https://doi.org/10.1016/j.jpcs.2017.12.042

    Article  CAS  Google Scholar 

  117. Z.-Y. Sui, P.-Y. Zhang, M.-Y. Xu, Y.-W. Liu, Z.-X. Wei, B.-H. Han, Metal–organic framework-derived metal oxide embedded in nitrogen-doped graphene network for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9(49), 43171–43178 (2017). https://doi.org/10.1021/acsami.7b15315

    Article  CAS  PubMed  Google Scholar 

  118. H. Xue et al., Unique Co 3 O 4 /nitrogen-doped carbon nanospheres derived from metal–organic framework: insight into their superior lithium storage capabilities and electrochemical features in high-voltage batteries. J. Mater. Chem. A 6(26), 12466–12474 (2018). https://doi.org/10.1039/C8TA03959C

    Article  CAS  Google Scholar 

  119. Z.-W. Zhao et al., Carbon-Coated Fe 3 O 4 /VO x hollow microboxes derived from metal-organic frameworks as a high-performance anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 9(4), 3757–3765 (2017). https://doi.org/10.1021/acsami.6b15110

    Article  CAS  PubMed  Google Scholar 

  120. F. Wang, H.-Y. Zhuo, X. Han, W.-M. Chen, D. Sun, Foam-like CoO@N, S-codoped carbon composites derived from a well-designed N, S-rich Co-MOF for lithium-ion batteries. J. Mater. Chem. A 5(44), 22964–22969 (2017). https://doi.org/10.1039/C7TA07971K

    Article  CAS  Google Scholar 

  121. Z. Li, B. Tang, Mn 3 O 4 /nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries. Green Chem. 19(24), 5862–5873 (2017). https://doi.org/10.1039/C7GC02786A

    Article  CAS  Google Scholar 

  122. J.-L. Niu, C.-H. Zeng, H.-J. Peng, X.-M. Lin, P. Sathishkumar, Y.-P. Cai, Formation of N-doped carbon-coated ZnO/ZnCo 2 O 4 /CuCo 2 O 4 derived from a polymetallic metal-organic framework: toward high-rate and long-cycle-life lithium storage. Small 13(47), 1702150 (2017). https://doi.org/10.1002/smll.201702150

    Article  CAS  Google Scholar 

  123. Z. Xiu et al., Porous TiN nanoparticles embedded in a N-doped carbon composite derived from metal–organic frameworks as a superior anode in lithium-ion batteries. J. Mater. Chem. A 4(13), 4706–4710 (2016). https://doi.org/10.1039/C5TA10342H

    Article  CAS  Google Scholar 

  124. H. Li, Y. Su, W. Sun, Y. Wang, Carbon nanotubes rooted in porous ternary metal Sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life Lithium-Ion Batteries. Adv. Funct. Mater. 26(45), 8345–8353 (2016). https://doi.org/10.1002/adfm.201601631

    Article  CAS  Google Scholar 

  125. F. Zheng, M. He, Y. Yang, Q. Chen, Nano electrochemical reactors of Fe 2 O 3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries. Nanoscale 7(8), 3410–3417 (2015). https://doi.org/10.1039/C4NR06321J

    Article  CAS  PubMed  Google Scholar 

  126. F. Zheng, G. Xia, Y. Yang, Q. Chen, MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries. Nanoscale 7(21), 9637–9645 (2015). https://doi.org/10.1039/C5NR00528K

    Article  CAS  PubMed  Google Scholar 

  127. B. Sambandam et al., A sponge network-shaped Mn 3 O 4 /C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. Inorg. Chem. Front. 3(12), 1609–1615 (2016). https://doi.org/10.1039/C6QI00348F

    Article  CAS  Google Scholar 

  128. Z. Cui et al., A new strategy to effectively alleviate volume expansion and enhance the conductivity of hierarchical MnO@C nanocomposites for lithium ion batteries. J. Mater. Chem. A 5(41), 21699–21708 (2017). https://doi.org/10.1039/C7TA05986H

    Article  CAS  Google Scholar 

  129. S. Wang et al., Nanoparticle cookies derived from metal-organic frameworks: controlled synthesis and application in anode materials for Lithium-Ion batteries. Small 12(17), 2365–2375 (2016). https://doi.org/10.1002/smll.201600106

    Article  CAS  PubMed  Google Scholar 

  130. M. Zhong, W.-W. He, W. Shuang, Y.-Y. Liu, T.-L. Hu, X.-H. Bu, Metal–organic framework derived core-shell Co/Co 3 O 4 @N-C nanocomposites as high performance anode materials for lithium ion batteries. Inorg. Chem. 57(8), 4620–4628 (2018). https://doi.org/10.1021/acs.inorgchem.8b00365

    Article  CAS  PubMed  Google Scholar 

  131. X. Li et al., Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8(23), 1800716 (2018). https://doi.org/10.1002/aenm.201800716

    Article  CAS  Google Scholar 

  132. Z.-J. Jiang, S. Cheng, H. Rong, Z. Jiang, J. Huang, General synthesis of MFe 2 O 4 /carbon (M = Zn, Mn Co, Ni) spindles from mixed metal organic frameworks as high performance anodes for lithium ion batteries. J. Mater. Chem. A 5(45), 23641–23650 (2017). https://doi.org/10.1039/C7TA07097G

    Article  CAS  Google Scholar 

  133. M. Huang et al., MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J. Mater. Chem. A 5(1), 266–274 (2017). https://doi.org/10.1039/C6TA09030C

    Article  CAS  Google Scholar 

  134. Z. He et al., MOF-derived hierarchical MnO-doped Fe 3 O 4 @C composite nanospheres with enhanced lithium storage. ACS Appl. Mater. Interfaces 10(13), 10974–10985 (2018). https://doi.org/10.1021/acsami.8b01358

    Article  CAS  PubMed  Google Scholar 

  135. J. Ma, H. Wang, X. Yang, Y. Chai, R. Yuan, Porous carbon-coated CuCo 2 O 4 concave polyhedrons derived from metal–organic frameworks as anodes for lithium-ion batteries. J. Mater. Chem. A 3(22), 12038–12043 (2015). https://doi.org/10.1039/C5TA00890E

    Article  CAS  Google Scholar 

  136. G. Huang, D. Yin, F. Zhang, Q. Li, L. Wang, Yolk@Shell or concave cubic NiO–Co 3 O 4 @C nanocomposites derived from metal-organic frameworks for advanced Lithium-Ion Battery anodes. Inorg. Chem. 56(16), 9794–9801 (2017). https://doi.org/10.1021/acs.inorgchem.7b01296

    Article  CAS  PubMed  Google Scholar 

  137. L. Yu, J.F. Yang, X.W.D. Lou, Formation of CoS 2 nanobubble hollow prisms for highly reversible lithium storage. Angew. Chemie 128(43), 13620–13624 (2016). https://doi.org/10.1002/ange.201606776

    Article  Google Scholar 

  138. S. Foley et al., Copper Sulfide (Cu x S) nanowire-in-carbon composites formed from direct sulfurization of the metal-organic framework HKUST-1 and their use as Li-Ion battery cathodes. Adv. Funct. Mater. 28(19), 1800587 (2018). https://doi.org/10.1002/adfm.201800587

    Article  CAS  Google Scholar 

  139. J. Jin, Y. Zheng, L.B. Kong, N. Srikanth, Q. Yan, K. Zhou, Tuning ZnSe/CoSe in MOF-derived N-doped porous carbon/CNTs for high-performance lithium storage. J. Mater. Chem. A 6(32), 15710–15717 (2018). https://doi.org/10.1039/C8TA04425B

    Article  CAS  Google Scholar 

  140. R. Dai et al., Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 13(27), 1700521 (2017). https://doi.org/10.1002/smll.201700521

    Article  CAS  Google Scholar 

  141. D.-H. Yang, X. Zhou, M. Zhong, Z. Zhou, X.-H. Bu, A robust hybrid of SnO 2 nanoparticles sheathed by N-doped carbon derived from ZIF-8 as anodes for Li-Ion batteries. ChemNanoMat 3(4), 252–258 (2017). https://doi.org/10.1002/cnma.201600371

    Article  CAS  Google Scholar 

  142. Y. Zhong et al., Bi nanoparticles anchored in N-doped porous carbon as anode of high energy density lithium ion battery. Nano-Micro Lett. 10(4), 56 (2018). https://doi.org/10.1007/s40820-018-0209-1

    Article  CAS  Google Scholar 

  143. X. Zhang et al., Porous cake-like TiO2 derived from metal-organic frameworks as superior anode material for sodium ion batteries. Ceram. Int. 43(2), 2398–2402 (2017). https://doi.org/10.1016/j.ceramint.2016.11.028

    Article  CAS  Google Scholar 

  144. Z. Hong, M. Kang, X. Chen, K. Zhou, Z. Huang, M. Wei, Synthesis of mesoporous Co 2+ -doped TiO2 nanodisks derived from metal organic frameworks with improved sodium storage performance. ACS Appl. Mater. Interfaces 9(37), 32071–32079 (2017). https://doi.org/10.1021/acsami.7b06290

    Article  CAS  PubMed  Google Scholar 

  145. X. Zhang, D. Li, G. Zhu, T. Lu, L. Pan, Porous CoFe2O4 nanocubes derived from metal-organic frameworks as high-performance anode for sodium ion batteries. J. Colloid Interface Sci. 499, 145–150 (2017). https://doi.org/10.1016/j.jcis.2017.03.104

    Article  CAS  PubMed  Google Scholar 

  146. Y. Guo, Y. Zhu, C. Yuan, C. Wang, MgFe 2 O 4 hollow microboxes derived from metal-organic-frameworks as anode material for sodium-ion batteries. Mater. Lett. 199, 101–104 (2017). https://doi.org/10.1016/j.matlet.2017.04.069

    Article  CAS  Google Scholar 

  147. G. Zou et al., Cube-shaped porous carbon derived from MOF-5 as advanced material for sodium-ion batteries. Electrochim. Acta 196, 413–421 (2016). https://doi.org/10.1016/j.electacta.2016.03.016

    Article  CAS  Google Scholar 

  148. W. Zhang et al., Hollow carbon nanobubbles: monocrystalline MOF nanobubbles and their pyrolysis. Chem. Sci. 8(5), 3538–3546 (2017). https://doi.org/10.1039/C6SC04903F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. G. Zou et al., 3D hollow porous carbon microspheres derived from Mn-MOFs and their electrochemical behavior for sodium storage. J. Mater. Chem. A 5(45), 23550–23558 (2017). https://doi.org/10.1039/C7TA08352A

    Article  CAS  Google Scholar 

  150. H.-H. Li et al., Shale-like Co 3 O 4 for high performance lithium/sodium ion batteries. J. Mater. Chem. A 4(21), 8242–8248 (2016). https://doi.org/10.1039/C6TA02417C

    Article  CAS  Google Scholar 

  151. J. Chen, Q. Ru, Y. Mo, S. Hu, X. Hou, Design and synthesis of hollow NiCo 2 O 4 nanoboxes as anodes for lithium-ion and sodium-ion batteries. Phys. Chem. Chem. Phys. 18(28), 18949–18957 (2016). https://doi.org/10.1039/C6CP02871C

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Naval Koralkar have write the manuscript and shubham mehta have done the plagiarism and grammar mistake. And Abhilasha upadhyay have done the table and figure formation. And gautam patel and kalim deshmukh have review and give final approval for this manuscript.

Corresponding authors

Correspondence to Gautam Patel or Kalim Deshmukh.

Ethics declarations

Conflict of interest

Authors state that they do not have any conflict of Interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koralkar, N., Mehta, S., Upadhyay, A. et al. MOF-Based Nanoarchitectonics for Lithium-Ion Batteries: A Comprehensive Review. J Inorg Organomet Polym 34, 903–929 (2024). https://doi.org/10.1007/s10904-023-02898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02898-0

Keywords

Navigation