Skip to main content

Advertisement

Log in

Synergistic Effect of Fe2O3 Doping on Physical, Structural, Optical, and Radiation Shielding Characteristics of the Glasses in a System (30-x)BaO–30TiO2–40SiO2–xFe2O3 (0 ≤ x ≤ 6) for Optoelectronic Applications

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Herein, various aspects on the optical, structural, and radiation shielding characteristics of the synthesized glasses doped with Fe2O3 via melt-quenching technique in the system (30-x)BaO–30TiO2–40SiO2–xFe2O3 (0 ≤ x ≤ 6) were studied. To verify the amorphous nature of the prepared glasses, XRD was performed. Physical properties like density (ρ) and oxygen packing density (OPD), revealed their enhanced values within the ranges of 3.5312–4.4135 g/cm3 and 75.7678–96.7366 g-atom/l. However, the molar volume (Vm) of the fabricated glasses was found to be in decreasing order from 30.3559 to 23.7759 cm3/mol respectively. Further insight into the molecular structure was performed via FTIR and Raman spectroscopies which showed the formation of different bonding such as Si–O–Si, Ti–O, and Si–O–Ti along with non-bridging oxygens (NBOs). However, UV–visible spectroscopic results showed the indirect energy band gap (\({E}_{g}^{ind}\)) decreases from 3.922 to 3.502 eV with increasing the content of Fe2O3 while the refractive index (η), and optical dielectric constant (ɛ) were found to be in an increasing range of 2.185–2.274 and 4.774–5.169. Further, to determine the elemental distribution and their corresponding electronic states of a tentative glass sample (BTS6F), X-ray photoelectron spectroscopy (XPS) was carried out. In order to study the radiation shielding properties of all the fabricated glasses, the Phy-X/PSD software across a spectrum of energies from 0.015 to 15 MeV was successfully executed. Among all the glasses, the glass BTS6F demonstrates superior gamma-radiation shielding capabilities along with effective optical properties. Therefore, this glass sample can be used for optoelectronics and radiation shielding applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Data will be provided on request.

References

  1. F. Gan, Optical properties of fluoride glasses: a review. J. Non-cryst. Solids 184, 9–20 (1995). https://doi.org/10.1016/0022-3093(94)00592-3

    Article  CAS  Google Scholar 

  2. M.C. Ersundu, A.E. Ersundu, N. Gedikoğlu, E. Şakar, M. Büyükyıldız, M. Kurudirek, Physical, mechanical and gamma-ray shielding properties of highly transparent ZnO-MoO3-TeO2 glasses. J. Non-cryst. Solids 524, 119648 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119648

    Article  CAS  Google Scholar 

  3. M.I. Sayyed, K.M. Kaky, D.K. Gaikwad, O. Agar, U.P. Gawai, S.O. Baki, Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3). J. Non-cryst. Solids 507, 30–37 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.12.010

    Article  CAS  Google Scholar 

  4. G. Lakshminarayana, S.O. Baki, K.M. Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi, Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-cryst. Solids 471, 222–237 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.06.001

    Article  CAS  Google Scholar 

  5. C.R. Kurkjian, Mechanical properties of phosphate glasses. J. Non-cryst. Solids 263, 207–212 (2000). https://doi.org/10.1016/S0022-3093(99)00637-7

    Article  Google Scholar 

  6. M. Abdel-Baki, F. El-Diasty, Optical properties of oxide glasses containing transition metals: case of titanium-and chromium-containing glasses. Curr. Opin. Solid State Mater. Sci. 10, 217–229 (2006). https://doi.org/10.1016/j.cossms.2007.08.001

    Article  CAS  Google Scholar 

  7. I.Y. Bu, Sol–gel deposition of fluorine-doped tin oxide glasses for dye sensitized solar cells. Ceram. Int. 40(1), 417–422 (2014). https://doi.org/10.1016/j.ceramint.2013.06.017

    Article  CAS  Google Scholar 

  8. T. Komatsu, T. Honma, Laser patterning and growth mechanism of orientation designed crystals in oxide glasses: a review. J. Solid State Chem. 275, 210–222 (2019). https://doi.org/10.1016/j.jssc.2019.04.020

    Article  CAS  Google Scholar 

  9. M.E. Lines, Oxide glasses for fast photonic switching: a comparative study. J. Appl. Phys. 69(10), 6876–6884 (1991). https://doi.org/10.1063/1.347677

    Article  CAS  Google Scholar 

  10. K. Richardson, D. Krol, K. Hirao, Glasses for photonic applications. Int. J. Appl. Glass Sci. 1(1), 74–86 (2010). https://doi.org/10.1111/j.2041-1294.2010.00008.x

    Article  CAS  Google Scholar 

  11. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017). https://doi.org/10.1016/j.jallcom.2017.08.237

    Article  CAS  Google Scholar 

  12. S.A.M. Issa, M. Ahmad, H.O. Tekin, Y.B. Saddeek, M.I. Sayyed, Effect of Bi2O3 content on mechanical and nuclear radiation shielding properties of Bi2O3–MoO3–B2O3–SiO2–Na2O–Fe2O3 glass system. Results Phys. 13, 102165 (2019). https://doi.org/10.1016/j.rinp.2019.102165

    Article  Google Scholar 

  13. A.K. Yadav, C.R. Gautam, P. Singh, Crystallization and dielectric properties of Fe2O3 doped barium strontium titanate borosilicate glass. RSC Adv. 5(4), 2819–2826 (2015). https://doi.org/10.1039/c4ra11301b

    Article  CAS  Google Scholar 

  14. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. SILICON 14, 8971–8979 (2022). https://doi.org/10.1007/s12633-022-01702-x

    Article  CAS  Google Scholar 

  15. R.K. Mishra, D. Gupta, S.K. Avinashi, S. Kumari, A. Hussain, C.R. Gautam, Effect of Pb++/Sr++ ratio on physical, structural, and mechanical properties of (Pb-Sr)TiO3 borosilicate glass ceramics. SILICON 15, 2567–2580 (2023). https://doi.org/10.1007/s12633-022-02196-3

    Article  CAS  Google Scholar 

  16. A. Madheshiya, A.K. Singh, Shweta, R.K. Mishra, K.K. Dey, M. Ghosh, K.K. Srivastava, P. Garg, C.R. Gautam, Synthesis, physical, optical and structural properties of SrTiO3 borosilicate glasses with addition of CrO3. Bull. Mater. Sci. 46, 34 (2023). https://doi.org/10.1007/s12034-022-02871-6

    Article  CAS  Google Scholar 

  17. R.K. Mishra, Shweta, P. Sen, K.K. Dey, M. Ghosh, C.R. Gautam, Physical, structural, and optical properties of ZrO2 reinforced (100-x–y)[SrTiO3]-x[2B2O3.SiO2]-y[ZrO2] glasses. SILICON 15, 1–19 (2023). https://doi.org/10.1007/s12633-023-02523-2

    Article  CAS  Google Scholar 

  18. M.A. Alothman, Z.A. Alrowaili, J.S. Alzahrani, E.A.A. Wahab, I.O. Olarinoye, C. Sriwunkum, K.S. Shaaban, M.S. Al-Buriahi, Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3–Pb3O4–Al2O3 glasses. J. Alloys Compd. 882, 160625 (2021). https://doi.org/10.1016/j.jallcom.2021.160625

    Article  CAS  Google Scholar 

  19. Z. Fatima, A. Hussain, C.R. Gautam, Shweta, P. Singh, A. Ahmed, G. Singh, M.K. Singh, Synthesis and characterization type glass and glass ceramics. J. Asian Ceram. Soc. 8(4), 1108–1126 (2020). https://doi.org/10.1080/21870764.2020.1815349

    Article  Google Scholar 

  20. H.A. Saudi, W.M. Abd-Allah, K.S. Shaaban, Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. J. Mater. Sci. Mater. Electron. 31, 6963–6976 (2020). https://doi.org/10.1007/s10854-020-03261-6

    Article  CAS  Google Scholar 

  21. A. Singh, S. Rai, Upconversion and optical thermometry in Ho3+: TeO2 glass, effect of addition of PbO2 and BaCO3. Appl. Phys. B 86, 661–666 (2007). https://doi.org/10.1007/s00340-006-2505-6

    Article  CAS  Google Scholar 

  22. A. Terczynska-Madej, K. Cholewa-Kowalska, M. Laczka, The effect of silicate network modifiers on colour and electron spectra of transition metal ions. Opt. Mater. 32(11), 1456–1462 (2010). https://doi.org/10.1016/j.optmat.2010.05.024

    Article  CAS  Google Scholar 

  23. Z.A. Alrowaili, A.M. Al-Baradi, M.A. Sayed, A.M. Ali, E.A.A. Wahab, M.S. Al-Buriahi, K.S. Shaaban, The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik 249, 168259 (2022). https://doi.org/10.1016/j.ijleo.2021.168259

    Article  CAS  Google Scholar 

  24. F.A. Moustafa, A.M. Fayad, F.M. Ezz-Eldin, I. El-Kashif, Effect of gamma radiation on ultraviolet, visible and infrared studies of NiO, Cr2O3 and Fe2O3-doped alkali borate glasses. J. Non-cryst. Solids 376, 18–25 (2013). https://doi.org/10.1016/j.jnoncrysol.2013.04.052

    Article  CAS  Google Scholar 

  25. H.D. Shashikala, N.K. Udayashankar, Influence of Fe3+ ions on optical, structural, thermal and mechanical properties of Li2O–Na2O–K2O–ZnO–B2O3 based glass system. Ceram. Int. 46(4), 5213–5222 (2020). https://doi.org/10.1016/j.ceramint.2019.10.269

    Article  CAS  Google Scholar 

  26. M.I. Sayyed, M.A. Abdo, H.E. Ali, M.S. Sadeq, Fe2O3 within Na2O–Al2O3–B2O3 glasses to study the structural and optical features changes. Opt. Mater. 131, 112419 (2022). https://doi.org/10.1016/j.optmat.2022.112419

    Article  CAS  Google Scholar 

  27. A.M. Abdel-Ghany, A.S. Abu-Khadra, M.S. Sadeq, Influence of Fe cations on the structural and optical properties of alkali-alkaline borate glasses. J. Non-cryst. Solids 548, 120320 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120320

    Article  CAS  Google Scholar 

  28. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia, A.M. Ali, K.S. Shaaban, Physical, radiation shielding and crystallization properties of Na2O–Bi2O3–MoO3–B2O3–SiO2–Fe2O3 glasses. SILICON 14, 405–418 (2022). https://doi.org/10.1007/s12633-020-00827-1

    Article  CAS  Google Scholar 

  29. B. Albarzan, A.H. Almuqrin, M.S. Koubisy, E.A.A. Wahab, K.A. Mahmoud, K.S. Shaaban, M.I. Sayyed, Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses. Prog. Nucl. Energy 141, 103931 (2021). https://doi.org/10.1016/j.pnucene.2021.103931

    Article  CAS  Google Scholar 

  30. M.S. Dahiya, A. Yadav, N. Manyani, S. Chahal, A. Hooda, A. Agarwal, S.J. Khasa, Fe-substituted Co-Li bismuth borate glasses: crystallization kinetics and optical absorption. J. Therm. Anal. Calorim. 126, 1191–1199 (2016). https://doi.org/10.1007/s10973-016-5622-4

    Article  CAS  Google Scholar 

  31. E.M.A. Hussein, M.A.Y. Barakat, Structural, physical and ultrasonic studies on bismuth borate glasses modified with Fe2O3 as promising radiation shielding materials. Mater. Chem. Phys. 290, 126606 (2022). https://doi.org/10.1016/j.matchemphys.2022.126606

    Article  CAS  Google Scholar 

  32. Shweta, C.R. Gautam, K.K. Dey, M. Ghosh, R. Prakash, K. Sharma, D. Singh, Influence of carbon nanotubes reinforcement on the structural feature and bioactivity of SiO2–Al2O3–MgO–K2CO3–CaO–MgF2 bioglass. Appl. Phys. A 127, 545 (2021). https://doi.org/10.1007/s00339-021-04708-1

    Article  CAS  Google Scholar 

  33. Shweta, C.R. Gautam, V.P. Tripathi, S. Kumar, S. Behera, R.K. Gautam, Synthesis, physical and mechanical properties of lead strontium titanate glass ceramics. Phys. B: Condens. Matter 615, 413069 (2021). https://doi.org/10.1016/j.physb.2021.413069

    Article  CAS  Google Scholar 

  34. M.D. O’donnell, R.G. Hill, Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 6(7), 2382–2385 (2010). https://doi.org/10.1016/j.actbio.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  35. S. Kumari, A. Hussain, S.K. Avinashi, R.K. Mishra, J. Rao, S. Behera, R.K. Gautam, C.R. Gautam, Enhanced physical and mechanical properties of resin added with aluminum oxyhydroxide for dental applications. Ceram. Int. 49(19), 31412–31427 (2023). https://doi.org/10.1016/j.ceramint.2023.07.089

    Article  CAS  Google Scholar 

  36. E.A.A. Wahab, K.S. Shaaban, Structural and optical features of aluminum lead borate glass doped with Fe2O3. Appl. Phys. A 127, 956 (2021). https://doi.org/10.1007/s00339-021-05062-y

    Article  CAS  Google Scholar 

  37. I.G. Geidam, K.A. Matori, M.K. Halimah, K.T. Chan, F.D. Muhammad, M. Ishak, S.A. Umar, A.M. Hamza, Optical characterization and polaron radius of Bi2O3 doped silica borotellurite glasses. J. Lumin. 246, 118868 (2022). https://doi.org/10.1016/j.jlumin.2022.118868

    Article  CAS  Google Scholar 

  38. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020). https://doi.org/10.1016/j.radphyschem.2019.108496

    Article  CAS  Google Scholar 

  39. S.K. Avinashi, P. Singh, K. Sharma, A. Hussain, D. Singh, C.R. Gautam, Morphological, mechanical, and biological evolution of pure hydroxyapatite and its composites with titanium carbide for biomedical applications. Ceram. Int. 48(13), 18475–18489 (2022). https://doi.org/10.1016/j.ceramint.2022.03.117

    Article  CAS  Google Scholar 

  40. A. Madheshiya, C.R. Gautam, S. Upadhyay, Preparation, optical and electrical properties of bismuth substituted lead titanate borosilicate glass and glass ceramics. J. Non-Cryst. Solids 502, 118–127 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.07.068

    Article  CAS  Google Scholar 

  41. G.P. Singh, J. Singh, P. Kaur, S. Kaur, D. Arora, R. Kaur, K. Kaur, D.P. Singh, Analysis of enhancement in gamma ray shielding proficiency by adding WO3 in Al2O3-PbO-B2O3 glasses using Phy-X/PSD. J. Mater. Res. Tech. 9(6), 14425–14442 (2020). https://doi.org/10.1016/j.jmrt.2020.10.020

    Article  CAS  Google Scholar 

  42. S.A.M. Issa, A.M. Ali, G. Susoy, H.O. Tekin, Y.B. Saddeek, R. Elsaman, H.H. Somaily, H. Algarni, Mechanical, physical and gamma ray shielding properties of xPbO-(50–x) MoO3–50V2O5 (25≤ x≤ 45 mol%) glass system. Ceram. Int. 46(12), 20251–20263 (2020). https://doi.org/10.1016/j.ceramint.2020.05.107

    Article  CAS  Google Scholar 

  43. Z. Fatima, C. Gautam, S.K. Avinashi, R.K. Mishra, Influence of phosphorus pentoxide on structural, dielectric, and mechanical properties of borosilicate glasses for sealant applications. Appl. Phys. A 129(7), 1–18 (2023). https://doi.org/10.1007/s00339-023-06768-x

    Article  CAS  Google Scholar 

  44. Shweta, M. Tahir, S.K. Avinashi, S. Parveen, S. Kumar, Z. Fatima, R.K. Mishra, S. Kumari, A. Hussain, J. Rao, M. Banerjee, C.R. Gautam, Synergetic effects of boron nitride with waste zirconia: evaluation of instantaneous fingerprint detection and mechanical properties for biomedical applications. J. Mech. Behav. 145, 1751–6161 (2023). https://doi.org/10.1016/j.jmbbm.2023.106032

    Article  CAS  Google Scholar 

  45. K.S. Shaaban, I. Boukhris, I. Kebaili, M.S. Al-Buriahi, Spectroscopic and attenuation shielding studies on B2O3–SiO2–LiF–ZnO–TiO2 glasses. SILICON 14, 3091–3100 (2022). https://doi.org/10.1007/s12633-021-01080-w

    Article  CAS  Google Scholar 

  46. C. Calahoo, L. Wondraczek, Ionic glasses: structure, properties and classification. J. Non-Cryst. Solids 8, 100054 (2020). https://doi.org/10.1016/j.nocx.2020.100054

    Article  CAS  Google Scholar 

  47. B. Karmakar, Fundamentals of glass and glass nanocomposites. Glass Nanocomposites 2016, 3–53 (2016). https://doi.org/10.1016/B978-0-323-39309-6.00001-8

    Article  Google Scholar 

  48. C.R. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives. ISRN Ceram. 2012, 1–17 (2012). https://doi.org/10.5402/2012/428497

    Article  CAS  Google Scholar 

  49. M.R. Ahsan, M.G. Mortuza, Infrared spectra of xCaO(1–x-z)SiO2zP2O5 glasses. J. Non-Cryst. Solids 351, 2333–2340 (2005). https://doi.org/10.1016/j.jnoncrysol.2005.05.030

    Article  CAS  Google Scholar 

  50. S.C. Nkabinde, M.J. Moloto, K.P. Matabola, Optimized loading of TiO2 nanoparticles into electrospun polyacrylonitrile and cellulose acetate polymer fibers. J. Nano. 2020, 1–10 (2020). https://doi.org/10.1155/2020/9429421

    Article  CAS  Google Scholar 

  51. M. Pourmand, M.R. Mohammadizadeh, Influence of temperature on TiO2 nanoparticles. Curr. Nanosci. 4, 151–156 (2008). https://doi.org/10.2174/157341308784340859

    Article  CAS  Google Scholar 

  52. A. Fahami, R. Ebrahimi-Kahrizsangi, B. Nasiri-Tabrizi, Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite. Solid State Sci. 13, 135–141 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.10.026

    Article  CAS  Google Scholar 

  53. K.S. Finnie, V. Luca, P.D. Moran, J.R. Bartlett, J.L. Woolfrey, Vibrational spectroscopy and EXAFS study of Ti(OC2H5)4 and alcohol exchange in Ti(iso-OC3H7)4. J. Mater. Chem. 10, 409–418 (2000). https://doi.org/10.1039/A906662D

    Article  CAS  Google Scholar 

  54. B.J. Saikia, Spectroscopic estimation of geometrical structure elucidation in natural SiO2 crystal. J. Mater. Phys. Chem. 2(2), 28–33 (2014). https://doi.org/10.12691/jmpc-2-2-3

    Article  CAS  Google Scholar 

  55. S. Thakur, V. Thakur, A. Kaur, L. Singh, Study of the crystallization and structural behavior of bismuth barium titanate glass-ceramics. J. Non-Cryst. Solids 557, 120563 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120563

    Article  CAS  Google Scholar 

  56. M.L. Krishnan, M.M. Neethish, V.V.R.K. Kumar, Structural and optical studies of rare earth-free bismuth silicate glasses for white light generation. J. Lumin. 201, 442–450 (2018). https://doi.org/10.1016/j.jlumin.2018.05.023

    Article  CAS  Google Scholar 

  57. Shweta, S.K. Avinashi, A. Hussain, Z. Fatima, K. Sharma, S. Khanka, R. Prakash, D. Singh, C.R. Gautam, Structural, morphological and mechanical insights from La2O3 doped machinable silicate glass ceramics for biomedical applications. Ceram. Int. 49(6), 8801–8819 (2023). https://doi.org/10.1016/j.ceramint.2022.11.031

    Article  CAS  Google Scholar 

  58. E. Rodrigues, P. Pereira, T. Martins, F. Vargas, T. Scheller, J. Correa, J.D. Nero et al., Novel rare earth (Ce and La) hydrotalcite like material: synthesis and characterization. Mater. Lett. 78, 195–198 (2012). https://doi.org/10.1016/j.matlet.2012.03.025

    Article  CAS  Google Scholar 

  59. L.F. Koroleva, Synthesis of spinel-based ceramic pigments from hydroxycarbonates. Glass Ceram. 61, 299–302 (2004). https://doi.org/10.1023/B:GLAC.0000048695.24873.a9

    Article  CAS  Google Scholar 

  60. S.R. Culler, H. Ishida, J.L. Koenig, The silane interphase of composites: Effects of process conditions on γ-aminopropyltriethoxysilane. Polym. Compos. 7, 231–238 (1986). https://doi.org/10.1002/pc.750070406

    Article  CAS  Google Scholar 

  61. O. Rojas, M. Prudent, M.E. López, F. Vargas, H. Ageorges, Influence of atmospheric plasma spraying parameters on porosity formation in coatings manufactured from 45s5 bioglass® powder. J. Therm. Spray Technol. 29, 185–198 (2020). https://doi.org/10.1007/s11666-019-00952-3

    Article  CAS  Google Scholar 

  62. F. Kermani, A. Vojdani-Saghir, S.M. Beidokhti, S. Nazarnezhad, Z. Mollaei, S. Hamzehlou, A. El-Fiqi, F. Baino, S. Kargozar, Iron (Fe)-doped mesoporous 45S5 bioactive glasses: Implications for cancer therapy. Trans. Oncology 20, 101397 (2022). https://doi.org/10.1016/j.tranon.2022.101397

    Article  CAS  Google Scholar 

  63. E.N. Ferreira, T.B.M.G. Arruda, F.E.A. Rodrigues, D.T.D. Arruda, J.H. da Silva Júnior, D.L. Porto, N.M.P.S. Ricardo, Investigation of the thermal degradation of the biolubricant through TG-FTIR and characterization of the biodiesel–Pequi (Caryocar brasiliensis) as energetic raw material. Fuel 245, 398–405 (2019). https://doi.org/10.1016/j.fuel.2019.02.006

    Article  CAS  Google Scholar 

  64. H.A. ElBatal, M.Y. Hassaan, M.A. Fanny, M.M. Ibrahim, ‘Optical and FT infrared absorption spectra of soda lime silicate glasses containing nano Fe2O3 and effects of gamma irradiation. SILICON 9, 511–517 (2017). https://doi.org/10.1007/s12633-014-9262-7

    Article  CAS  Google Scholar 

  65. Shweta, P. Dixit, A. Singh, S.K. Avinashi, B.C. Yadav, C.R. Gautam, Fabrication, structural, and physical properties of alumina doped calcium silicate glasses for carbon dioxide gas sensing applications. J. Non-Cryst. Solids 583, 121475 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121475

    Article  CAS  Google Scholar 

  66. J. Schroeder, W. Wu, J.L. Apkarian, M. Lee, L.G. Hwa, C.T. Moynihan, Raman scattering and Boson peaks in glasses: temperature and pressure effects. J. Non-Cryst. Solids 349, 88–97 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.08.265

    Article  CAS  Google Scholar 

  67. V. Thakur, A. Singh, R. Punia, M. Kaur, L. Singh, Effect of BaTiO3 on the structural and optical properties of lithium borate glasses. Ceram. Int. 41, 10957–10965 (2015). https://doi.org/10.1016/j.ceramint.2015.05.039

    Article  CAS  Google Scholar 

  68. E. Haily, L. Bih, A. Lahmar, M. Elmarssi, B. Manoun, Effect of BaO–Bi2O3–P2O5 glass additive on structural, dielectric and energy storage properties of BaTiO3 ceramics. Mater. Chem. Phys. 241, 122434 (2020). https://doi.org/10.1016/j.matchemphys.2019.122434

    Article  CAS  Google Scholar 

  69. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  CAS  Google Scholar 

  70. E.C. Ziemath, M.A. Aegerter, Raman and infrared investigations of glass and glass-ceramics with composition 2Na2O·1CaO·3SiO2. J. Mater. Res. 9(1), 216–225 (1994). https://doi.org/10.1557/JMR.1994.0216

    Article  CAS  Google Scholar 

  71. C. Ziegler, G. Frank, W. Göpel, Photoemission study of the Ba core levels in YBa2Cu3O7-x. Z. Physik B-Condens. Matter 81, 349–353 (1990). https://doi.org/10.1007/BF01390814

    Article  CAS  Google Scholar 

  72. L. Mi, Q. Zhang, H. Wang, Z. Wu, Y. Guo, Y. Li, X. Xiong, K. Liu, W. Fu, Y. Ma, B. Wang, X. Qi, Synthesis of BaTiO3 nanoparticles by sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity. Ceram. Int. 46(8), 10619–10633 (2020). https://doi.org/10.1016/j.ceramint.2020.01.066

    Article  CAS  Google Scholar 

  73. L.V. Maneeshya, P.V. Thomas, K. Joy, Effects of site substitutions and concentration on the structural, optical and visible photoluminescence properties of Er doped BaTiO3 thin films prepared by RF magnetron sputtering. Opt. Mater. 46, 304–309 (2015). https://doi.org/10.1016/j.optmat.2015.04.036

    Article  CAS  Google Scholar 

  74. N.C. Zoita, V. Braic, M. Danila, A.M. Vlaicu, C. Logofatu, C.E.A. Grigorescu, M. Braic, Influence of film thickness on the morphological and electrical properties of epitaxial TiC films deposited by reactive magnetron sputtering on MgO substrates. J. Cryst. Growth 389, 92–98 (2014). https://doi.org/10.1016/j.jcrysgro.2013.11.076

    Article  CAS  Google Scholar 

  75. D. Dimova-Malinovska, C. Janvier, M. Sendova-Vassileva, M. Kamenova, T. Marinova, V. Krastev, Correlation between the photoluminescence and chemical bonding in porous silicon. Solid State Commun. 99(9), 641–644 (1996). https://doi.org/10.1016/0038-1098(96)00156-1

    Article  CAS  Google Scholar 

  76. J. Ma, L. Shi, Y. Shi, S. Luo, J. Xu, Pyrolysis of polymethylsilsesquioxane. J. Appl. Polym. Sci. 85(5), 1077–1086 (2002). https://doi.org/10.1002/app.10576

    Article  CAS  Google Scholar 

  77. K. Idczak, R. Idczak, Investigation of surface segregation in Fe–Cr–Si alloys by XPS. Metall. Mater. Trans. A 51, 3076–3089 (2020). https://doi.org/10.1007/s11661-020-05758-5

    Article  CAS  Google Scholar 

  78. K. Idczak, R. Idczak, R. Konieczny, An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS. Phys. B: Condens. 491, 37–45 (2016). https://doi.org/10.1016/j.physb.2016.03.018

    Article  CAS  Google Scholar 

  79. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. McIntyre, Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interace Anal. 36, 1564–1574 (2004). https://doi.org/10.1002/sia.1984

    Article  CAS  Google Scholar 

  80. J. Jae-Il, D.D. Edwards, X-ray photoelectron (XPS) and diffuse reflectance infra fourier transformation (DRIFT) study of Ba0.5Sr0.5CoxFe1-xO3-δ (BSCF: x=0-0.8) ceramics. J. Solid State Chem. 184(8), 2238–2243 (2011). https://doi.org/10.1016/j.jssc.2011.06.016

    Article  CAS  Google Scholar 

  81. P.M. Kumar, S. Badrinarayanan, M. Sastry, Nanocrystalline TiO2 studied by optical FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states. Thin Solid Films 358(1–2), 122–130 (2000). https://doi.org/10.1016/S0040-6090(99)00722-1

    Article  CAS  Google Scholar 

  82. N. Bayal, R. Singh, V. Polshettiwar, Nanostructured silica–titania hybrid using dendritic fibrous nanosilica as a photocatalyst. Chem. Sus. Chem. 10(10), 2182–2191 (2017). https://doi.org/10.1002/cssc.201700135

    Article  CAS  Google Scholar 

  83. Z. Lu, X. Jiang, B. Zhou, X. Wu, L. Lu, Study of effect annealing temperature on the structure, morphology and photocatalytic activity of Si doped TiO2 thin films deposited by electron beam evaporation. App. Surf. Sci. 257(24), 10715–10720 (2011). https://doi.org/10.1016/j.apsusc.2011.07.085

    Article  CAS  Google Scholar 

  84. J. Wei, B. Liu, X. Zhang, C. Song, One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Mater. 33(4), 333–340 (2018). https://doi.org/10.1016/S1872-5805(18)60343-9

    Article  CAS  Google Scholar 

  85. Y.G. Alghamdi, B. Krishnakumar, M.A. Malik, S. Alhayyani, Design and preparation of biomass-derived activated carbon loaded TiO2 photocatalyst for photocatalytic degradation of reactive red 120 and ofloxacin. Polymers 14(5), 880 (2022). https://doi.org/10.3390/polym14050880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. A. Saeed, W. Chen, A.H. Shah, Y. Zhang, I. Mehmood, Y. Liu, Enhancement of photocatalytic CO2 reduction for novel Cd0.2Zn0.8S@Ti3C2 (MXenes) nanocomposites. J. CO2 Util. 47, 101501 (2021). https://doi.org/10.1016/j.jcou.2021.101501

    Article  CAS  Google Scholar 

  87. G. Wang, L. Ma, X. Yang, X. Li, P. Han, C. Yang, L. Cong, W. Song, G. Song, Improving the interfacial and flexural properties of carbon fiber-epoxy composites via the grafting of a hyperbranched aromatic polyamide onto a carbon fiber surface on the basis of solution polymerization. J. Appl. Polym. Sci. 136(12), 47232 (2019). https://doi.org/10.1002/app.47232

    Article  CAS  Google Scholar 

  88. M.S. Salinigopal, N. Gopakumar, P.S. Anjana, Structural, optical and dielectric properties of aluminoborosilicate glasses. J. Electron. Mater. 49, 695–704 (2020). https://doi.org/10.1007/s11664-019-07674-w

    Article  CAS  Google Scholar 

  89. R.S. Gedam, D.D. Ramteke, Synthesis and characterization of lithium borate glasses containing La2O3. Trans. Indian Inst. Met. 65, 31–35 (2012). https://doi.org/10.1007/s12666-011-0107-4

    Article  CAS  Google Scholar 

  90. A. Azuraida, M.K. Halimah, M. Ishak, S.N. Nazrin, N.N. Syamimi, L. Hasnimulyati, Electronic polarizability and optical basicity of BaO-B2O3-TeO2 glass system. Res. Sq. 2021, 1–20 (2021). https://doi.org/10.21203/rs.3.rs-1093838/v1

    Article  Google Scholar 

  91. J. Bhemarajam, P.S. Prasad, M.M. Babu, M. Özcan, M. Prasad, Investigations on structural and optical properties of various modifier oxides (MO= ZnO, CdO, BaO, and PbO) containing bismuth borate lithium glasses. J. Compos. Sci. 12, 308 (2021). https://doi.org/10.3390/jcs5120308

    Article  CAS  Google Scholar 

  92. D. Singh, S. Kumar, K. Anand, R. Thangaraj, Composition dependence of the optical constants of amorphous (Se80Te20)100-xAgx (0≤ x≤ 4) films. Phys. Status Solidi A 210, 2128–2134 (2013). https://doi.org/10.1002/pssa.201329166

    Article  CAS  Google Scholar 

  93. M.H.A. Mhareb, Y.S.M. Alajerami, N. Dwaikat, M.S. Al-Buriahi, M. Alqahtani, F. Alshahri, N. Saleh, N. Alonizan, M.A. Saleh, M.I. Sayyed, Investigation of photon, neutron and proton shielding features of H3BO3–ZnO–Na2O–BaO glass system. Nucl. Eng. Tech. 53, 949–959 (2021). https://doi.org/10.1016/j.net.2020.07.035

    Article  CAS  Google Scholar 

  94. K.S. Shaaban, A.M. Al-Baradi, A.M. Ali, The impact of Cr2O3 on the mechanical, physical, and radiation shielding characteristics of Na2B4O7–CaO–SiO2 glasses. SILICON 14, 10375–10382 (2022). https://doi.org/10.1007/s12633-022-01783-8

    Article  CAS  Google Scholar 

  95. A.F.A. El-Rehim, H.Y. Zahran, I.S. Yahia, Physical, radiation shielding and crystallization properties of Na2O-Bi2O3-MoO3-B2O3-SiO2-Fe2O3 glasses. SILICON 14, 405–418 (2022). https://doi.org/10.1007/s12633-020-00827-1

    Article  CAS  Google Scholar 

  96. Z.M. Elqahtani, Z.A. Alrowaili, C. Eke, I.O. Olarinoye, C. Mutuwong, B.T. Tonguc, M.S. Al-Buriahi, Optical transmission quality and radiation shielding performance of TeO2+ZnO+La2O3 ternary glass system. Optik 266, 169625 (2022). https://doi.org/10.1016/j.ijleo.2022.169625

    Article  CAS  Google Scholar 

  97. R.K. Mishra, S. Kumari, P. Sen, S.K. Avinashi, H. Thomas, Z. Fatima, M. Ghosh, K.K. Dey, C.R. Gautam, Doping impacts of La2O3 on physical, structural, optical and radiation shielding properties of (30–x)BaCO3-30TiO2-40SiO2-xLa2O3 (0≤ x≤ 6) glasses for optoelectronic applications. Phys. Scr. 98(10), 105918 (2023). https://doi.org/10.1088/1402-4896/acf539

    Article  Google Scholar 

  98. E.A. Mahdy, N.A.M. Alsaif, Y.S. Rammah, H.A. Abo-Mosallam, Synthesis, thermal, structural, microhardness properties and gamma-ray attenuation efficiency of Cd2+ and Fe3+ Co-doped Na2O-CaO-SiO2 glasses. J. Electron. Mater. 52, 5492–5503 (2023). https://doi.org/10.1007/s11664-023-10474-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors would like to thank and acknowledge the Centre of Excellence (CoE) scheme of Government of UP for giving the powder X-Ray Diffraction (PXRD) facility at the Department of Physics, University of Lucknow, Lucknow.

Funding

This present work is financially supported by CSIR, Human Resource Development Group, CSIR Complex, Pusa, New Delhi (India) under SRF scheme vide File No. 09/0107(12949)/2021-EMR-I.

Author information

Authors and Affiliations

Authors

Contributions

RKM: Investigations; Data curation; Visualization; Formal analysis; Methodology; Writing—original draft. SKA: Investigations; Writing—some part of original draft. S: Investigations; Writing—some part of original draft. SK: Investigations; Writing—some part of original draft. CRG: Conceptualization; Supervision; Writing—review & editing.

Corresponding author

Correspondence to Chandkiram Gautam.

Ethics declarations

Competing interests

The authors declare that they have no known financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 62 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Avinashi, S.K., Shweta et al. Synergistic Effect of Fe2O3 Doping on Physical, Structural, Optical, and Radiation Shielding Characteristics of the Glasses in a System (30-x)BaO–30TiO2–40SiO2–xFe2O3 (0 ≤ x ≤ 6) for Optoelectronic Applications. J Inorg Organomet Polym 34, 1379–1402 (2024). https://doi.org/10.1007/s10904-023-02897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02897-1

Keywords

Navigation