Skip to main content

Advertisement

Log in

Influence of Atmospheric Plasma Spraying Parameters on Porosity Formation in Coatings Manufactured from 45S5 Bioglass® powder

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Atmospheric plasma spraying parameters were studied to understand their influence on the splat stacking and the porosity formation in coatings made from commercial Schott 45S5 Bioglass® powder onto AISI 304 L stainless steel substrate. The spraying parameters were established from numerical simulation carried out by the Jets&Poudres software. The plasma spraying was performed by using an Oerlikon Metco F4 MB gun with a 6-mm-internal-diameter nozzle. Three Ar/H2 mixtures were used as plasma-forming gas (95/5, 88/12 and 84/16 vol.%), and the current intensity was varied from 450 to 650 A and the spray distance from 60 to 100 mm. The cooling of the samples during spraying was controlled by air jet pressure. The x-ray diffraction and the scanning electron microscopy were used to determine phases and structural characteristics of coatings, respectively. The numerical simulation results for each set of spray parameters have shown suitable Sommerfeld number for proper splat stacking. However, Na2O and P2O5 evaporation occurred experimentally during spraying of 45S5 Bioglass® promoted the porosity formation into the coating structure. Low porosity was obtained for 45S5 Bioglass coatings manufactured under the appropriate relationship between plasma-forming gas mixture ratio, current intensity, spray distance and cooling air jet pressure to achieve thermal energy input enough to overcome the glass transition temperature and to avoid the evaporation of volatile oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.R. Jones et al., Bio-Glasses An Introduction, Wiley, Oxford, 2012, p 1-28

    Google Scholar 

  2. R.B. Heimann et al., Bioceramics Coatings for Medical Implants, Wiley, Weinheim, 2015, p 253-298

    Google Scholar 

  3. L.L. Hench et al., Bonding Mechanisms at the Interface of Ceramic Prosthetic Materials, J. Biomed. Mater. Res., 1971, 5, p 117-141

    Google Scholar 

  4. L.L. Hench et al., Biomaterials: A Forecast for the Future, Biomaterials, 1998, 19, p 1419-1423

    CAS  Google Scholar 

  5. A.R. Boccaccini et al., Bioactive Glasses. Fundamentals Technology and Applications, Royal Society of Chemistry, London, 2017, p 1-53

    Google Scholar 

  6. I.D. Xynos et al., Gene-Expression Profiling of Human Osteoblasts Following Treatment with the Ionic Products of Bioglass® 45S5 Dissolution, J. Biomed. Mater. Res., 2001, 55, p 151-157

    CAS  Google Scholar 

  7. M. Vollenweider et al., Remineralization of Human Dentin Using Ultrafine Bioactive Glass Particles, Acta Biomater., 2007, 3, p 936-943

    CAS  Google Scholar 

  8. L.C. Gerhardt et al., The Pro-angiogenic Properties of Multi-Functional Bioactive Glass Composite Scaffolds, Biomaterials, 2011, 32, p 4096-4108

    CAS  Google Scholar 

  9. M.N. Rahaman et al., Bioactive Glass in Tissue Engineering, Acta Biomater., 2011, 7, p 2355-2373

    CAS  Google Scholar 

  10. I.D. Thompson et al., Mechanical Properties of Bioactive Glasses, Glass-Ceramics and Composites, Proc. Inst. Mech. Eng. Part H J. Eng. Med., 1998, 212, p 127-136

    CAS  Google Scholar 

  11. L.L. Hench, An Introduction to Bioceramics, Imperial College Press, London, 2013

    Google Scholar 

  12. J.Y. Wong et al., Biomaterials, CRC Press, Boca Raton, 2012, p 1-34

    Google Scholar 

  13. H.O. Ylänen et al., Bioactive Glasses—Materials Properties and Applications, Woodhead Publishing Limited, Cambridge, 2011, p 87-116

    Google Scholar 

  14. S. Lopez-Esteban et al., Bioactive Glass Coatings for Orthopedic Metallic Implants, J. Eur. Ceram. Soc., 2003, 23, p 2921-2930

    CAS  Google Scholar 

  15. V. Cannillo et al., Different Approaches to Produce Coatings with Bioactive Glasses: Enamelling vs Plasma Spraying, J. Eur. Ceram. Soc., 2010, 30, p 2031-2039

    CAS  Google Scholar 

  16. C. Gabbi et al., Bioactive Glass Coating: Physicochemical Aspects and Biological Findings, Biomaterials, 1995, 16, p 515-520

    CAS  Google Scholar 

  17. T.M. Lee et al., Characteristics of Plasma-Sprayed Bioactive Glass Coatings on Ti-6A1-4V Alloy: An In-vitro Study, Surf. Coat. Technol., 1996, 79, p 170-177

    CAS  Google Scholar 

  18. G. Goller et al., The Effect of Bond Coat on Mechanical Properties of Plasma Sprayed Bioglass-Titanium Coatings, Ceram. Int., 2004, 30, p 351-355

    CAS  Google Scholar 

  19. M. Monsalve et al., Bioactivity and Mechanical Properties of Plasma-Sprayed Coatings of Bioglass Powders, Surf. Coat. Technol., 2013, 220, p 60-66

    CAS  Google Scholar 

  20. V. López Calvo et al., 45S5 Bioactive Glass Coatings by Atmospheric Plasma Spraying Obtained from Feedstocks Prepared by Different Routes, J. Mater. Sci., 2014, 49, p 7933-7942

    Google Scholar 

  21. M. Monsalve et al., Bioactivity and Mechanical Properties of Bioactive Glass Coatings Fabricated by Flame Spraying, Surf. Coat. Technol., 2015, 268, p 142-146

    CAS  Google Scholar 

  22. G. Bolelli et al., Comparison between Suspension Plasma Sprayed and High Velocity Suspension Flame Sprayed Bioactive Coatings, Surf. Coat. Technol., 2015, 280, p 232-249

    CAS  Google Scholar 

  23. E. Cañas et al., Effect of Particle Size on Processing of Bioactive Glass Powder for Atmospheric Plasma Spraying, J. Eur. Ceram. Soc., 2016, 36, p 837-845

    Google Scholar 

  24. A.C. Popa et al., Nanomechanical Characterization of Bioglass Films Synthesized by Magnetron Sputtering, Thin Solid Films, 2014, 553, p 166-172

    CAS  Google Scholar 

  25. A.C. Popa et al., Superior Biofunctionality of Dental Implant Fixtures Uniformly Coated with Durable Bioglass Films by Magnetron Sputtering, J. Mech. Behav. Biomed. Mater., 2015, 51, p 313-327

    CAS  Google Scholar 

  26. A. Balamurugan et al., Electrochemical and Structural Evaluation of Functionally Graded Bioglass-Apatite Composites Electrophoretically Deposited onto Ti-6Al-4V Alloy, Electrochim. Acta, 2009, 54, p 1192-1198

    CAS  Google Scholar 

  27. K.P. Ananth et al., Electrophoretic Bilayer Deposition of Zirconia and Reinforced Bioglass System on Ti-6Al-4V for Implant Applications: An in vitro investigation, Mater. Sci. Eng. C, 2013, 3, p 4160-4166

    Google Scholar 

  28. P. Kiran et al., Effective Role of CaO/P2O5 Ratio on SiO2-CaO-P2O5 Glass System, Journal of Advanced Research, 2017, 8, p 279-288

    CAS  Google Scholar 

  29. T.H. Qazi et al., Comparison of the Effects of 45S5 and 1303 Bioactive Glass Microparticles on hMSC Behavior, J. Biomed. Mater. Res. Part A, 2017, 10, p 2772-2782

    Google Scholar 

  30. L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, 2nd ed., Wiley, Paris, 2008, p 167-219

    Google Scholar 

  31. A. Cattini, Coatings of Bioactive Glasses and Hydroxyapatite and Their Properties, University of Limoges and University of Modena and Reggio Emilia, Limoges, 2013, p 1-122

    Google Scholar 

  32. A.R. Boccaccini et al., Bioactive Glasses. Fundamentals Technology and Applications, Royal Society of Chemistry, London, 2017, p 169-173

    Google Scholar 

  33. J.A. Epinette et al., Fifteen Years of Clinical Experience with Hydroxyapatite Coatings in Joint Arthroplasty, Springer, Paris, 2004, p 1-24

    Google Scholar 

  34. P.L. Fauchais et al., Thermal Spray Fundamentals, Springer, New York, 2014, p 807-980

    Google Scholar 

  35. G. Delluc et al., Jet & Poudres, Université de Limoges, Limoges, 2003

    Google Scholar 

  36. M. Vicent et al., Preparation of High Solids content Nano-Titania Suspensions to Obtain Spray-Dried Nanostructured Powders for Atmospheric Plasma Spraying, J. Eur. Ceram. Soc., 2012, 32, p 185-194

    CAS  Google Scholar 

  37. E. Sánchez et al., Preparation and Spray Drying of Al2O3-TiO2 nanoparticle suspensions to obtain nanostructured coatings by APS, Surf. Coat. Technol., 2010, 205, p 987-992

    Google Scholar 

  38. L. Strmungsmechanik et al., Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process, Int. J. Multiph. Flow, 1995, 21, p 151-173

    Google Scholar 

  39. S. Chandra et al., Formation of Solid Splats During Thermal Spray Deposition, ASM Int., 2009, 18, p 148-180

    CAS  Google Scholar 

  40. H. Copete et al., Improvement of the Adhesion on Hydroxyapatite Coatings Produced by Oxyfuel Thermal Spray from Results of Numerical Simulation • Mejoramiento de la Adherencia en Recubrimientos de Hidroxiapatita Elaborados Mediante Proyección Térmica Oxiacetilénica, DYNA, 2017, 84, p 170-176

    Google Scholar 

  41. K. Mori et al., Charge States of Ca Atoms in β-Dicalcium Silicate, J. Solid State Chem., 2006, 179, p 3286-3294

    CAS  Google Scholar 

  42. J. Qian et al., Fabrication and Characterization of Biomorphic 45S5 Bioglass Scaffold from Sugarcane, Mater. Sci. Eng. C, 2009, 29, p 1361-1364

    CAS  Google Scholar 

  43. M. Khorami et al., In-vitro Bioactivity and Biocompatibility of Lithium Substituted 45S5 Bioglass, Mater. Sci. Eng. C, 2011, 31, p 1584-1592

    CAS  Google Scholar 

  44. O. Bretcanu et al., Sintering and Crystallisation of 45S5 Bioglass® Powder, J. Eur. Ceram. Soc., 2009, 29, p 3299-3306

    CAS  Google Scholar 

  45. X. Chatzistavrou et al., Following Bioactive Glass Behavior Beyond Melting Temperature by Thermal and Optical Methods, Phys. Status Solidi, 2004, 201, p 944-951

    CAS  Google Scholar 

  46. J.M. Oliveira et al., Effects of Si Speciation on the In-vitro Bioactivity of Glasses, Biomaterials, 2002, 23, p 371-379

    CAS  Google Scholar 

  47. M. Mozafari et al., Applied Surface Science Biomimetic Formation of Apatite on the Surface of Porous Gelatin/Bioactive Glass Nanocomposite Scaffolds, Appl. Surf. Sci., 2010, 257, p 1740-1749

    CAS  Google Scholar 

  48. H. Peterlik et al., Structural Characterization of Gel-Derived Calcium Silicate Systems, J. Phys. Chem. A, 2010, 114, p 10403-10411

    Google Scholar 

  49. Z. Gou et al., Synthesis and In-vitro Bioactivity of Dicalcium Silicate Powders, J. Eur. Ceram. Soc., 2004, 24, p 93-99

    CAS  Google Scholar 

  50. Z. Gou et al., Preparation and Characterization of Novel Bioactive Dicalcium Silicate Ceramics, J. Eur. Ceram. Soc., 2005, 25, p 1507-1514

    CAS  Google Scholar 

  51. A. Dey et al., Development of Hydroxyapatite Coating by Microplasma Spraying, Mater. Manuf. Process., 2009, 24, p 1321-1330

    CAS  Google Scholar 

  52. T. Poirier et al., Formation of Hollow Vitreous and Semi-Crystalline Microspheres in Slag Flame Spraying, Ceram. Int., 2014, 41, p 369-377

    Google Scholar 

  53. L.L. Hench, The Story of Bioglass®, J. Mater. Sci. Mater. Med., 2006, 17, p 967-978

    CAS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge financial support from COLCIENCIAS—the Administrative Department of Science, Technology and Innovation (727 doctoral scholarship and code Project 1115745-57862), Limousin Administrative Region and University of Limoges for Cotutelle Scholarship. Authors many thank Dayana Meza, Eloïse Hyvernaud and Richard Mayet for their help in the SEM and XRD characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rojas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited paper selected from presentations at the 2019 International Thermal Spray Conference, held May 26-29, 2019 in Yokohama, Japan and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, O., Prudent, M., López, M.E. et al. Influence of Atmospheric Plasma Spraying Parameters on Porosity Formation in Coatings Manufactured from 45S5 Bioglass® powder. J Therm Spray Tech 29, 185–198 (2020). https://doi.org/10.1007/s11666-019-00952-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-019-00952-3

Keywords

Navigation