Skip to main content
Log in

Shielding parameters and UV spectral studies on modified borate glasses doped with Gd2O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

xGd2O3–5SrO–(23.5−x)CaO–26Na2O–2.8P2O5–42.7B2O3 glasses have been synthesized via the well-known melt quenching technique. Gd2O3 content was increased from 0 to 0.5 mol% in steps of 0.1 at the expense of CaO, in the chemical composition of these glasses. The optical band gap was obtained using UV–Vis spectroscopy. Based on the absorption spectra, the optical energy gap (Eg) is evaluated using the Davis–Mott relation. Eg values decrease from 3.176 to 2.92 eV and from 3.55 to 3.43 eV for indirect and direct band gaps, respectively, with the incorporation of Gd2O3. Several optical properties, such as refractive index, optical basicity, dielectric constant, and molar polarization, have been calculated for every glass composition to interpret the experimental data. The refractive index was enhanced with the addition of Gd ions. The absorption edge was shifted toward the higher wavelength side from 366 to 383.66 nm by incorporating Gd2O3. The radiation shielding properties of the synthesized samples were calculated using the Phy-X/PSD program in the energy interval 0.015–15 MeV. The results showed that increasing Gd2O3 content increases mass and linear attenuation coefficients (\({\mu }_{\mathrm{m}}\) and \(\mu\)), whereas the half-value layer (HVL) decreases. This glass system suits shielding and optical applications based on the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data are available from the authors on reasonable request.

References

  1. I.I. Kindrat, B.V. Padlyak, A. Drzewiecki, Intrinsic luminescence of un-doped borate glasses. J. Lumin. 187, 546–554 (2017)

    Google Scholar 

  2. M.A. Marzouk, S.M. Abo-Naf, H.A. Zayed, N.S. Hassan, Glass former effects on photoluminescence and optical properties of some heavy metal oxide glasses doped with transition metal ions. J. Appl. Spectrosc. 84(1), 162–169 (2017)

    ADS  Google Scholar 

  3. N. Krishnamacharyulu, G.J. Mohini, G.S. Baskaran, V.R. Kumar, N. Veeraiah, Effect of ZrO2 on the bioactive properties of B2O3–SiO2–P2O5–Na2O–CaO glass system. J. Non Cryst. Solids 452, 23–29 (2016)

    ADS  Google Scholar 

  4. S. Kapoor et al., Network glasses under pressure: permanent densification in modifier-free Al2O3−B2O3−P2O5−SiO2 systems. Phys. Rev. Appl. 7(5), 54011 (2017)

    Google Scholar 

  5. M. Bengisu, Borate glasses for scientific and industrial applications: a review. J. Mater. Sci. 51(5), 2199–2242 (2016)

    ADS  Google Scholar 

  6. C. Lin et al., Study on the structure, thermal and optical properties in Cr2O3-incorporated MgO–Al2O3–SiO2–B2O3 glass. J. Non Cryst. Solids 500, 235–242 (2018)

    ADS  Google Scholar 

  7. M.A. Marzouk, Optical characterization of some rare earth ions doped bismuth borate glasses and effect of gamma irradiation. J. Mol. Struct. 1019, 80–90 (2012)

    ADS  Google Scholar 

  8. R. Ruamnikhom, P. Yasaka, J. Kaewkhao, Physical and optical properties of Dy3+ bismuth barium borate glasses. Interdiscipl. Res. Rev. 12(5), 1–4 (2017)

    Google Scholar 

  9. A. Jha, Inorganic Glasses for Photonics: Fundamentals, Engineering, and Applications (Wiley, New York, 2016)

    Google Scholar 

  10. E. Abou Hussein, Gamma rays interactions on optical, FTIR and ESR spectra of alkaline earth binary borate glasses. Arab. J. Nucl. Sci. Appl. 53(2), 1–18 (2020)

    Google Scholar 

  11. W. Vogel, Glass Chemistry (Springer Science & Business Media, Berlin, 2012)

    Google Scholar 

  12. A.M. Abdelghany, M.A. Ouis, M.A. Azooz, H.A. EllBatal, Defect formation of gamma irradiated MoO3-doped borophosphate glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 114, 569–574 (2013)

    ADS  Google Scholar 

  13. B.T. Rao, S. Cole, P.S. Prasad, Effects of MoO3 addition on spectroscopic properties of lithium zinc borate glass. Phys. Chem. 2(6), 94–99 (2012)

    Google Scholar 

  14. A. Bhogi, R. Vijaya Kumar, P. Kistaiah, Optical absorption and FTIR studies of Cu2+ ion doped in 25Li2O–15BaO–(60−x) B2O3 glasses. IOP Conf. Ser. Mater. Sci. Eng. 360, 1–6 (2018)

    Google Scholar 

  15. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding. J. Alloys Compd. 727, 1227–1236 (2017)

    Google Scholar 

  16. J. Jiusti et al., Effect of network formers and modifiers on the crystallization resistance of oxide glasses. J. Non Cryst. Solids 550, 120359 (2020)

    Google Scholar 

  17. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical properties of some borate glasses. Ceram. Int. 45(15), 18327–18332 (2019)

    Google Scholar 

  18. P. Ramesh, G. Jagannath, B. Eraiah, M.K. Kokila, Optical and physical investigations of lanthanum bismuth borate glasses doped with Ho2O3. Mater. Sci. Eng. C (2018). https://doi.org/10.1088/1757-899X/310/1/012032

    Article  Google Scholar 

  19. N. Wantana et al., Development of WO3–Gd2O3–B2O3 high-density glasses doped with Dy3+ for photonics and scintillation materials application. Solid State Sci. 101, 106135 (2020)

    Google Scholar 

  20. Y. Al-Hadeethi, M.I. Sayyed, J. Kaewkhao, B.M. Raffah, R. Almalki, R. Rajaramakrishna, An extensive investigation of physical, optical and radiation shielding properties for borate glasses modified with gadolinium oxide. Appl. Phys. A 125(11), 749 (2019)

    ADS  Google Scholar 

  21. R.G. Fernandes, D.F. Franco, V.R. Mastelaro, T. Cardinal, O. Toulemonde, M. Nalin, Thermal and structural modification in transparent and magnetic germanoborate glasses induced by Gd2O3. Ceram. Int. 46(14), 22079–22089 (2020)

    Google Scholar 

  22. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Google Scholar 

  23. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, D.S. Zucker, XCOM: photon cross sections database, Web Version 1.2. http://physics.nist.gov/PhysRefData/Xcom/Text. XCOM. html (19 April 2005) (National Inst. Stand. Technol., Gaithersburg, 1999)

  24. M.A. Madshal, G. El-Damrawi, A.M. Abdelghany, M.I. Abdelghany, Structural studies and physical properties of Gd2O3-doped borate glass. J. Mater. Sci. Mater. Electron. 32(11), 14642–14653 (2021)

    Google Scholar 

  25. P.K. Pothuganti, A. Bhogi, M.R. Kalimi, P. Reniguntla, Physical and optical properties of borobismuthate glasses containing vanadium oxide. Glas. Phys. Chem. 46, 146–154 (2020)

    Google Scholar 

  26. A. Bhogi, R.V. Kumar, P. Kistaiah, Optical absorption and FTIR studies of Cu2+ ion doped in 25Li2O–15BaO–(60−x) B2O3 glasses. IOP Conf. Ser. Mater. Sci. Eng. 360(1), 12018 (2018)

    Google Scholar 

  27. A.M. Abdelghany, G. El-Damrawi, A.H. Oraby, M.A. Madshal, Optical and FTIR structural studies on CoO-doped strontium phosphate glasses. J. Non Cryst. Solids 499, 153–158 (2018)

    ADS  Google Scholar 

  28. D. Souri, Z.E. Tahan, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors. Appl. Phys. B 119(2), 273–279 (2015)

    ADS  Google Scholar 

  29. C. Dayanand, G. Bhikshamaiah, M. Salagram, IR and optical properties of PbO glass containing a small amount of silica. Mater. Lett. 23(4–6), 309–315 (1995)

    Google Scholar 

  30. M.N. Azlan, C. Eevon, M.K. Halimah, R. El-Mallawany, S.L. Hii, Effect of Gd3+ on optical and thermal properties of tellurite glass. J. Theor. Appl. Phys. 14, 137–147 (2020)

    ADS  Google Scholar 

  31. Y.S.M. Alajerami et al., Luminescence characteristics of Li2CO3–K2CO3–H3BO3 glasses co-doped with TiO2/MgO. Appl. Radiat. Isot. 82, 12–19 (2013)

    Google Scholar 

  32. R.S. Gedam, D.D. Ramteke, Electrical and optical properties of lithium borate glasses doped with Nd2O3. J. Rare Earths 30(8), 785–789 (2012)

    Google Scholar 

  33. V. Dimitrov, S. Sakka, Linear and nonlinear optical properties of simple oxides. II. J. Appl. Phys. 79(3), 1741–1745 (1996)

    ADS  Google Scholar 

  34. A.A. Abul-Magd, H.Y. Morshidy, A.M. Abdel-Ghany, The role of NiO on the structural and optical properties of sodium zinc borate glasses. Opt. Mater. (Amst.) 109, 110301 (2020)

    Google Scholar 

  35. M.A. Marzouk, H.A. ElBatal, A.M. Abdelghany, Gamma irradiation effect on structural and spectral properties of CeO2, Nd2O3, Gd2O3 or Dy2O3–doped strontium borate glass. Silicon 10, 29–37 (2018)

    Google Scholar 

  36. Y.H. Elbashar, D. Rayan, S. ElGabaly, A. Mohamed, Optical spectroscopic study of cobalt oxide doped boron glass and its ion effect on optical properties. Egypt. J. Chem. 63(6), 11–12 (2020)

    Google Scholar 

  37. G. El-Damrawi, A.M. Abdelghany, A.H. Oraby, M.A. Madshal, Structural and optical absorption studies on Cr2O3 doped SrO–P2O5 glasses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 228, 117840 (2020)

    Google Scholar 

  38. V. Bhatia et al., Mixed transition and rare earth ion doped borate glass: structural, optical and thermoluminescence study. J. Mater. Sci. Mater. Electron. 30(1), 677–686 (2019)

    Google Scholar 

  39. S.A. Umar, M.K. Halimah, K.T. Chan, A.A. Latif, Polarizability, optical basicity and electric susceptibility of Er3+ doped silicate borotellurite glasses. J. Non Cryst. Solids 471, 101–109 (2017)

    ADS  Google Scholar 

  40. R. Divina, K.A. Naseer, K. Marimuthu, Y.S.M. Alajerami, M.S. Al-Buriahi, Effect of different modifier oxides on the synthesis, structural, optical, and gamma/beta shielding properties of bismuth lead borate glasses doped with europium. J. Mater. Sci. Mater. Electron. 31, 21486–21501 (2020)

    Google Scholar 

  41. H. Jabraoui, M. Badawi, S. Lebègue, Y. Vaills, Elastic and structural properties of low silica calcium aluminosilicate glasses from molecular dynamics simulations. J. Non Cryst. Solids 499, 142–152 (2018)

    ADS  Google Scholar 

  42. A. Abd El-Moneim, Correlating bulk modulus and Poisson’s ratio of alkali fluoride and oxyfluoride glasses with compositional parameters. J. Fluor. Chem. 221, 48–55 (2019)

    Google Scholar 

  43. Z.X. Mo, H.W. Guo, P. Liu, Y.D. Shen, D.N. Gao, Luminescence properties of magneto-optical glasses containing Tb3+ ions. J. Alloys Compd. 658, 967–972 (2016)

    Google Scholar 

  44. P.P. Pawar, S.R. Munishwar, S. Gautam, R.S. Gedam, Physical, thermal, structural and optical properties of Dy3+ doped lithium alumino-borate glasses for bright W-LED. J. Lumin. 183, 79–88 (2017)

    Google Scholar 

  45. N. Elkhoshkhany, R. Abbas, R. El-Mallawany, A.J. Fraih, Optical properties of quaternary TeO2–ZnO–Nb2O5–Gd2O3 glasses. Ceram. Int. 40(9), 14477–14481 (2014)

    Google Scholar 

  46. N. Berwal, S. Dhankhar, P. Sharma, R.S. Kundu, R. Punia, N. Kishore, Physical, structural and optical characterization of silicate modified bismuth–borate–tellurite glasses. J. Mol. Struct. 1127, 636–644 (2017)

    ADS  Google Scholar 

  47. S.L. Meena, B. Bhatia, Polarizability and optical basicity of Er3+ ions doped zinc lithium bismuth borate glasses. J. Pure Appl. Ind. Phys. 6(10), 175–183 (2016)

    Google Scholar 

  48. F. Nawaz, M.R. Sahar, S.K. Ghoshal, R.J. Amjad, M.R. Dousti, A. Awang, Spectral investigation of Sm3+/Yb3+ co-doped sodium tellurite glass. Chin. Opt. Lett. 11(6), 61605 (2013)

    Google Scholar 

  49. O.I. Sallam, A.M. Madbouly, N.A. Elalaily, F.M. Ezz-Eldin, Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J. Alloys Compd. 843, 156056 (2020)

    Google Scholar 

  50. A.M. Abdelghany, N.A.M. Alsaif, M.A. Madshal, H.A. ElBatal, Y.S. Rammah, W. Awad, Structural, optical and radiation shielding parameters of sodium aluminium borate glasses modified with chromium oxide. Radiat. Phys. Chem. 207, 110861 (2023)

    Google Scholar 

  51. M.S. Al-Buriahi, Y.S. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O. Appl. Phys. A 125, 1–8 (2019)

    ADS  Google Scholar 

Download references

Funding

No fund.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. MAM: conceptualization, methodology, validation, investigation, and writing—original draft. GE-D: supervision, and writing—review & editing. AMA: methodology, formal analysis, supervision, and writing—review & editing. AB: supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to M. A. Madshal or G. El-Damrawi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge, or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madshal, M.A., Abdelghany, A.M., Behairy, A. et al. Shielding parameters and UV spectral studies on modified borate glasses doped with Gd2O3. Appl. Phys. A 129, 759 (2023). https://doi.org/10.1007/s00339-023-07028-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07028-8

Keywords

Navigation