Skip to main content
Log in

Influence of Polyaniline as Filler on the Microstructural Features and Properties of Polycarbonate: Bismuth Sulfide Nanocomposite

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Multifunctional conductive nanocomposites based on thermoplastic polycarbonate (PC), dodecylbenzenesulphonic acid doped polyaniline (PANI-DBSA) and bismuth sulfide (BS) with good thermal and dielectric properties have been fabricated using solution casting technique. In the present work, different percentages of PANI-DBSA were blended with PC-BS composite and their electrical and dielectric properties as well as microstructural features were experimentally investigated. Analysis of positron lifetime data yielded three components, and it was observed that the increase in positron lifetime parameter viz., o-Ps lifetime at the higher concentration of PANI-DBSA, and also increase in the ortho-positronium (o-Ps) intensity at lower weight percentages of the filler may be ascribed to the increase in the interfacial space by phase separation of PANI-DBSA, BS and PC polymer matrix, and the formation of additional cavities at the interfaces of PC/BS/PANI-DBSA conducting composite, respectively. A decrease in the o-Ps intensity on the increase in filler level may be the consequence of decrease in the number of free volume holes that are available for electron—positron annihilation, due to the aggregation of PANI-DBSA. These observations are corroborated by other experimental investigations, like X-ray diffraction, electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Further, the effect of PANI-DBSA loading in PC-BS composite on the dielectric relaxation behavior has been studied over a wide range of frequencies, from 40 Hz up to 5 MHz. The presence of two semicircular arcs in the Cole–Cole plot of the composite confirms the existence of grain and grain boundary conduction in the nanocomposite. Good AC conductivity and permittivity, together with good thermal stability makes the PC/BS/PANI-DBSA conducting composite a potential candidate for electromagnetic interference shielding and energy storage applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A.P. Pitchiya, B.E. Slenker, A. Sreeram, C. Johnson, T. Orimolade, D. Roy, S. Krishnan, Graphene-enhanced ion transport in dual-conducting composite films of polyacetylene and an imidazolium iodide ionic liquid. Langmuir 39(19), 6767–6779 (2023). https://doi.org/10.1021/acs.langmuir.3c00259

    Article  CAS  PubMed  Google Scholar 

  2. K.A. Darwish, O.M. Hemeda, M.I. Abdel Ati, A.S. Abd El-Hameed, D. Zhou, M.A. Darwish, M.M. Salem, Synthesis, characterization, and electromagnetic properties of polypyrrole–barium hexaferrite composites for EMI shielding applications. Appl. Phys. A 129(460), 1–11 (2023). https://doi.org/10.1007/s00339-023-06738-3

    Article  CAS  Google Scholar 

  3. J. Lin, P. Liatsis, P. Alexandridis, Flexible and stretchable electrically conductive polymer materials for physical sensing applications. Polym. Rev. 63(1), 67–126 (2023)

    Article  CAS  Google Scholar 

  4. T. Zhu, H. Sternlicht, Y. Ha, C. Fang, D. Liu, B.H. Savitzky, X. Zhao, Y. Lu, Y. Fu, C. Ophus, C. Zhu, W. Yang, A.M. Minor, G. Liu, Formation of hierarchically ordered structures in conductive polymers to enhance the performances of lithium-ion batteries. Nat. Energy 8, 129–137 (2023). https://doi.org/10.1038/s41560-022-01176-6

    Article  CAS  Google Scholar 

  5. M. Abutalip, G. Zhigerbayeva, D. Kanzhigitova, P. Askar, Y. Yeszhan, T.T. Pham, S. Adilov, R. Luque, N. Nuraje, Strategic synthesis of 2D and 3D conducting polymers and derived nanocomposites. Adv. Mater. 35(5), 2208864 (2023). https://doi.org/10.1002/adma.202208864

    Article  CAS  Google Scholar 

  6. J. Hong, J. Kwon, D. Im, J. Ko, C.Y. Nam, H.G. Yang, S.H. Shin, S.M. Hong, S.S. Hwang, H.G. Yoon, A.S. Lee, Best practices for correlating electrical conductivity with broadband EMI shielding in binary filler-based conducting polymer composites. J. Chem. Eng. 455(1), 140528 (2023). https://doi.org/10.1016/j.cej.2022.140528

    Article  CAS  Google Scholar 

  7. A.U. Rehman, A.M. Afzal, M.W. Iqbal, S.M. Wabaidur, E.A. Al-Ammar, S. Mumtaz, E.H. Choi, M. Ali, Exploring the potential of hydrothermally synthesized AgZnS@Polyaniline composites as electrode material for high-performance supercapattery device. Phys. Scr. 98(8), 085009 (2023). https://doi.org/10.1088/1402-4896/ace560

    Article  Google Scholar 

  8. A. Nasir, A. Raza, M. Tahir, T. Yasin, M. Nadeem, B. Ahmad, Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Mater. Res. Bull. 157, 112006 (2023). https://doi.org/10.1016/j.materresbull.2022.112006

    Article  CAS  Google Scholar 

  9. S. Prashanth, M. Nagaraja, P.B. Mokshanatha, J. Pattar, S. Rajanna Manohara, K. Sunil, Structural, electrical and dielectric properties of chitosan/polyaniline/vanadium-pentoxide hybrid nanocomposites. J. Mol. Struct. 1267, 133600 (2022). https://doi.org/10.1016/j.molstruc.2022.133600

    Article  CAS  Google Scholar 

  10. S. Rehman, A. Khan, R. Ullah, N. Anwar, L. Ali Sha, N. Shah, M. Siddique, H. Ali, Synthesis and characterization of polyaniline doped with dodecylbenzene sulfonic and oxalic acids. Russ. J. PhysChem. A 96, S87-94 (2022). https://doi.org/10.1134/S0036024422140199

    Article  CAS  Google Scholar 

  11. M. Wang, X. Tang, J. Cai, H. Wu, J. Shen, S. Guo, Construction, mechanism and perspective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon 177, 377–402 (2021). https://doi.org/10.1016/j.carbon.2021.02.047

    Article  CAS  Google Scholar 

  12. F.A. Francis Xavier, M.D. Benoy, N.P. Ramesh, T. Varghese, Highly conducting PANI- fMWNT composites with exceptional crystallinity and enhanced thermal stability for potential applications. J. Solid State Chem. 316, 123638 (2022). https://doi.org/10.1016/j.jssc.2022.123638

    Article  CAS  Google Scholar 

  13. A. Rayar, C.S. Naveen, H.S. Onkarappa, V.S. Betagiri, G.D. Prasanna, EMI shielding applications of PANI—ferrite nanocomposite materials: a review. Synth. Met. 295, 117338 (2023). https://doi.org/10.1016/j.synthmet.2023.117338

    Article  CAS  Google Scholar 

  14. Anwar N, Shakoor A, Mahmood A. Synthesis and electrochemical characterization of polyaniline doped cadmium oxide (ANI-CdO) nanocomposite for supercapacitor applications. J. Energy Storage 2022;55(B):105446. https://doi.org/10.1016/j.est.2022.105446

  15. S. Sankar, M.T. Ramesan, Studies on optical properties, thermal stability and electrical conductivity of copper alumina nanoparticles-reinforced poly(pyrrole-co-indole) for optoelectronic devices. J. Mater. Sci. Mater. Electron. 33, 21762–21777 (2022). https://doi.org/10.1007/s10854-022-08965-5

    Article  CAS  Google Scholar 

  16. S. Sankar, A.A. Naik, T. Anilkuma, M.T. Ramesan, Characterization, conductivity studies, dielectric properties, and gas sensing performance of in situ polymerized polyindole/copper alumina nanocomposites. J. Appl. Polym. Sci. 137(38), 49145 (2020). https://doi.org/10.1002/app.49145

    Article  CAS  Google Scholar 

  17. M.T. Ramesan, K. Nushhat, K. Parvathi, T. Anilkumat, Nickel oxide @ polyindole/phenothiazine blend nanocomposites: preparation, characterization, thermal, electrical properties and gas sensing applications. J. Mater. Sci. 30, 13719–13728 (2019). https://doi.org/10.1007/s10854-019-01753-8A

    Article  CAS  Google Scholar 

  18. A. Furhan, M.T. Ramesan, Zinc oxide reinforced poly(para-aminophenol) nanocomposites: structural, thermal stability, conductivity and ammonia gas sensing applications. J. Macromol. Sci. A 59(10), 675–688 (2022). https://doi.org/10.1080/10601325.2022.2111262

    Article  CAS  Google Scholar 

  19. M.T. Ramesan, P. Jayakrishnan, Role of nickel oxide nanoparticles on magnetic, thermal and temperature dependent electrical conductivity of novel poly(vinyl cinnamate) based nanocomposites: applicability of different conductivity models. InorgOrganometPolym. 27, 143–153 (2017). https://doi.org/10.1007/s10904-016-0456-x

    Article  CAS  Google Scholar 

  20. V. Kaltenhauser, T. Rath, W. Haas, A. Torvisco, S.K. Müller, B. Friedel, B. Kunert, R. Saf, F. Hofer, G. Trimmel, Bismuth sulphide-polymer nanocomposites from a highly soluble bismuth xanthate precursor. J. Mater. Chem. C 47(1), 7825–7832 (2014). https://doi.org/10.1039/c3tc31684J

    Article  Google Scholar 

  21. M. Chiari, M. Nippa, Y. Ikeda, T. Sato, Y. Tsujimoto, A. Kato, N. Chiba, M. Fujinami, Free volume in carbon-black-filled isoprene rubber investigated by positron annihilation lifetime spectroscopy. J. Appl. Polym. Sci. 139(36), e52857 (2022). https://doi.org/10.1002/app.52857

    Article  CAS  Google Scholar 

  22. J. Kim, S. Kwon, D. Ihm, Synthesis and characterization of organic soluble polyaniline prepared by one-step emulsion polymerization. CurrAppl. Phys. 7(2), 205–210 (2007). https://doi.org/10.1016/j.cap.2006.05.001

    Article  Google Scholar 

  23. Y. Haba, E. Segal, M. Narkis, G.I. Titelman, A. Siegmann, Polymerization of aniline in the presence of DBSA in aqueous dispersion. Synth. Met. 106(1), 59–66 (1991). https://doi.org/10.1016/s0379-6779(99)00100-9

    Article  Google Scholar 

  24. S. Ding, H. Mao, W. Zhang, Fabrication of DBSA-doped polyanilinenanorods by interfacial polymerization. J. Appl. Polym. Sci. 109(5), 2842–2847 (2008). https://doi.org/10.1002/app.28355

    Article  CAS  Google Scholar 

  25. H. Wang, J. Zhu, J. Zhu, H. Chen, Sonochemical method for the preparation of bismuth sulfide nanorods. J. PhysChem. B. 106(15), 3848–3854 (2002). https://doi.org/10.1021/jp0135003

    Article  CAS  Google Scholar 

  26. W. Pan, S.L. Yang, G. Li, J.M. Jiang, Electrical and structural analysis of conductive polyaniline/polyacrylonitrile composites. EurPolym. J. 41(9), 2127–2133 (2005). https://doi.org/10.1016/j.eurpolymj.2005.04.003

    Article  CAS  Google Scholar 

  27. Y. Noskov, S. Mikhaylov, P. Coddeville, J. Wojkiewicz, A. Pud, Acid-dopant effects in the formation and properties of polycarbonate-polyaniline composites. Synth. Met. 217, 266–275 (2016). https://doi.org/10.1016/j.synthmet.2016.04.015

    Article  CAS  Google Scholar 

  28. B.S. Shashikala, M.Q.A. Al-Gunaid, T.E. Somesh, S.J. Anasuya, A. Siddaramaiah, Core-shell synergistic effect of (PANI-NaBiO2) incorporated polycarbonate films to photodegradation of MG dye and photovoltaic activity. Polym. Bull. 79, 7531–7554 (2022)

    Article  CAS  Google Scholar 

  29. F. Tanzeela, I. Shahid, S. Mazloom, M. Qaiser, I. Bushra, M.A. Rami, S.A. Nasser, A.I. Hala, A. Shahid, Y. Muhammad, S.A. Shuja, Optoelectronic analysis of bismuth sulfide and copper-doped bismuth sulfide thin films. JOM 74(7), 2809–2816 (2022). https://doi.org/10.1007/s11837-022-05219-x

    Article  CAS  Google Scholar 

  30. T. Abdiryim, Z. Xiao-Gang, R. Jamal, Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Mater. Chem. Phys. 90(2–3), 367–372 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.036

    Article  CAS  Google Scholar 

  31. D. Han, Y. Chu, L. Yang, Y. Liu, Z. Lv, Reversed micelle polymerization: a new route for the synthesis of DBSA-polyaniline nanoparticles. Colloids Surf. A 259(1–3), 179–187 (2005). https://doi.org/10.1016/j.colsurfa.2005.02.017

    Article  CAS  Google Scholar 

  32. P.S. Rao, S. Subrahmanya, D.N. Sathyanarayana, Polyaniline-polycarbonate blends synthesized by two emulsion pathways. Synth. Met. 143(3), 323–330 (2004). https://doi.org/10.1016/j.synthmet.2003.12.015

    Article  CAS  Google Scholar 

  33. C. Larosa, N. Patra, M. Salerno, L. Mikac, R.M. Meri, M. Ivanda, Preparation and characterization of polycarbonate/ multiwalled carbon nanotube nanocomposites. Beilstein J. Nanotechnol. 8, 2026–2031 (2017). https://doi.org/10.3762/bjnano.8.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. V.L. Reena, J.D. Sudha, R. Ramakrishnan, Development of electromagnetic interference shielding materials from the composite of nanostructured polyaniline-polyhydroxy iron-clay and polycarbonate. J. Appl. Polym. Sci. 128(3), 1756–1763 (2012). https://doi.org/10.1002/APP.38320

    Article  Google Scholar 

  35. K. Dash, N.K. Hota, B.P. Sahoo, Fabrication of thermoplastic polyurethaneand polyaniline conductive blend with improvedmechanical, thermal and excellent dielectric properties: exploring the effect of ultralow-level loading of SWCNTand temperature. J. Mater. Sci. 55, 12568–12591 (2020). https://doi.org/10.1007/s10853-020-04834

    Article  CAS  Google Scholar 

  36. P.S. Kanavi, S. Meti, R.H. Fattepur, V.B. Patil, S.M. Hunagund, S.A. Patil, S.R. Inamdar, A study on effect of MgO nanoparticles loading on the electrical conducting properties of polyvinyl alcohol/polyaniline polymer composite films. J. Nanopart. Res. 24, 232 (2022). https://doi.org/10.1007/s11051-022-05610-4

    Article  CAS  Google Scholar 

  37. S. Habibpour, K. Zarshenas, M. Zang, M. Hamidinejad, L. Ma, C.B. Park, A. Yu, Greatly enhanced electromagnetic interference shielding effectiveness and mechanical properties of polyaniline-grafted Ti3C2Tx MXene-PVDF composites. ACS Appl. Mater. Interfaces 14(18), 21521–21534 (2022). https://doi.org/10.1021/acsami.2c03121

    Article  CAS  PubMed  Google Scholar 

  38. H. AlFannakh, S.S. Ibrahim, The AC conductivity and dielectric permittivity for PVA-treated MWCNT electrolyte composite. J. Mater. Sci. Mater. 33, 24137–24150 (2022). https://doi.org/10.1007/s10854-022-09092-x

    Article  CAS  Google Scholar 

  39. M. Sabet, E. Mohammadian, The inclusion of graphenenanoplatelet on the mechanical, thermal, and electrical characteristics of polycarbonate. Polym. Bull. 80(2), 1–17 (2022). https://doi.org/10.1007/s00289-022-04156-8

    Article  CAS  Google Scholar 

  40. M. Chawla, N. Shekhawat, S. Aggarwal, A. Sharma, K.G.M. Nair, Cole-cole analysis and electrical conduction mechanism of N+ implanted polycarbonate. J. Appl. Phys. 115(18), 184104 (2014). https://doi.org/10.1063/1.4876123

    Article  CAS  Google Scholar 

  41. N. Anwar, A. Shakoor, N. Niaz, G. Ali, M. Qasim, M. Irfan, A. Mahmood, Investigation of dielectric relaxation behavior, electric modulus and AC conductivity of low doped polyaniline cadmium oxide (PANI-CdO) nanocomposites. Polym. Bull. 79, 6581–6600 (2022). https://doi.org/10.1007/s00289-021-03766-y

    Article  CAS  Google Scholar 

  42. K. Dash, B. Nayak, B. Sahoo, Enhanced dielectric properties of the ZnO nanoparticles dispersed PU/PANI blend nanocomposites. Mater. Today 74(4), 681–687 (2022). https://doi.org/10.1016/j.matpr.2022.10.270

    Article  CAS  Google Scholar 

  43. K. Dash, B. Sahoo, Exploring the effect of TiO2 and ionic liquid on the dielectric properties of polyurethane and polyaniline blend nanocomposites. Polym. Int. 71(7), 847–855 (2022). https://doi.org/10.1002/pi.6355

    Article  CAS  Google Scholar 

  44. M.F. Elmahaishi, R.S. Azis, I. Ismail, F.D. Muhammad, A review on electromagnetic microwave absorption properties: their materials and performance. J. Mater. Res. Technol. 20, 2188–2220 (2022). https://doi.org/10.1016/j.jmrt.2022.07.140

    Article  CAS  Google Scholar 

  45. N.P. Yadav, B.B. Sahu, T. Yadav, R. Kumar, A. Pathak, G.N. Pandey, S. Moharana, Enhanced dielectric and electrical properties of polystyrene-2% divinylbenzene (PDB) embedded in SrTiO3-poly (vinylidene fluoride) three-phase composite films. Optik 270, 170001 (2022). https://doi.org/10.1016/j.ijleo.2022.170001

    Article  CAS  Google Scholar 

  46. A. Bibi, A. Shakoor, N. Niaz, Polyaniline-calcium titanateperovskite hybrid composites: structural, morphological, dielectric and electric modulus analysis. Polym. Compos. 30, 1–13 (2022). https://doi.org/10.1177/09673911221102287

    Article  CAS  Google Scholar 

  47. E.A. Arrasheed, O.M. Hemeda, Y.A. Alibwaini, T.M. Meaz, R.M. Shalaby, A. Ajlouni, A.M.A. Henaish, B.I. Salem, Dielectric, electrical, magnetic, and mechanical properties of Ni-Al ferrite/PANI composite films. Ph. Transit. 95(11), 803–822 (2022). https://doi.org/10.1080/01411594.2022.2117043

    Article  CAS  Google Scholar 

  48. K. Dutta, S.K. De, Electrical conductivity and dielectric properties of SiO2 nanoparticles dispersed in conducting polymer matrix. J. Nanopart. Res. 9, 631–638 (2007). https://doi.org/10.1007/s11051-006-9184-4

    Article  CAS  Google Scholar 

  49. S. Ningaraju, A.P. Gnana Prakash, H.B. Ravikumar, Studies on free volume controlled electrical properties of PVA/NiO and PVA/TiO2 polymer nanocomposites. Solid State Ion. 320, 132–147 (2018). https://doi.org/10.1016/j.ssi.2018.03.006

    Article  CAS  Google Scholar 

  50. L. Yang, X. Liu, Z. Lu, T. Song, Z. Yang, J. Xu, W. Zhou, X. Cao, R. Yu, Q. Wang, Free volume dependence of the dielectric constant of poly(vinylidene fluoride) nanocomposite films. RSC Adv. 12(38), 24734–24742 (2022). https://doi.org/10.1039/D2RA04480C

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R. Ramani, G. Shariff, M.C. Thimmegowda, P.M. Sathyanarayana, M.B. Ashalatha, A. Balraj, C. Ranganathaiah, Influence of gamma irradiation on the formation of methanol induced micro-cracks in polycarbonate. J. Mater. Sci. 38, 1431–1438 (2003). https://doi.org/10.1023/A:1022951926769

    Article  CAS  Google Scholar 

  52. R. Mirji, B. Lobo, D. Dutta, S.P. Masti, M.P. Eelager, Experimental investigation of the structural features of polycarbonate (PC) filled with bismuth nitrate pentahydrate (BNP) composite films in terms of free volume defects probed by positron annihilation lifetime spectroscopy. Appl. Radiat. Isot. 196, 110773 (2023). https://doi.org/10.1016/j.apradiso.2023.110773

    Article  CAS  PubMed  Google Scholar 

  53. S. Ningaraju, V.N. Hegde, A.P. Gnana Prakash, H.B. Ravikuma, Free volume dependence on electrical properties of poly (styrene co-acrylonitrile)/nickel oxide polymer nanocomposites. ChemPhysLett 698, 24–35 (2018). https://doi.org/10.1016/j.cplett.2018.03.002

    Article  CAS  Google Scholar 

  54. P. Utpalla, S.K. Sharma, J. Prakash, J. Bahadur, M. Sahu, P.K. Pujari, Free volume structure at interphase region of poly (ethylene oxide)-Al2O3nanorods composites based solid polymer electrolyte and its direct correlation with Li ion conductivity. Solid State Ion. 375, 115840 (2022). https://doi.org/10.1016/j.ssi.2021.115840

    Article  CAS  Google Scholar 

  55. S. Ningaraju, H.B. Ravikumar, Studies on electrical conductivity of PVA/graphite oxide nanocomposites: a free volume approach. J. Polym. Res. 24(11), 1–11 (2017). https://doi.org/10.1007/s10965-016-1176-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Manipal Institute of Technology, Manipal for providing the XRD scans of the sample. The authors thank USIC, Mangalore University, Mangalore for providing an ATR-FTIR facility to scan the samples. The authors would like to thank the Indian Institute of Technology, Kanpur for providing the facility to scan SEM images of samples. PALS measurements were performed using the facility at the Saha Institute of Nuclear Physics, Kolkatta, India.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

SM and MA have made substantial contributions to the conception and acquisition of experimental data. PMGN has involved in the analysis and interpretation of data. RM has participated in determining the experimental results, designing, analyzing data and drafting the manuscript. BL has corrected the paper and given final approval for the version to be published. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Blaise Lobo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirji, R., Lobo, B., Mukherjee, S. et al. Influence of Polyaniline as Filler on the Microstructural Features and Properties of Polycarbonate: Bismuth Sulfide Nanocomposite. J Inorg Organomet Polym 34, 1232–1255 (2024). https://doi.org/10.1007/s10904-023-02886-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02886-4

Keywords

Navigation