Skip to main content
Log in

Electrochemical Detection of Hydrogen Peroxide Using Copper-Based Metal–Organic Frameworks: Nanoarchitectonics and Sensing Performance

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cu-MOFs are exciting materials with lots of unique characteristics which will be suitable for sensing applications. To date, there have not been any published review on the suitability and efficiency of Cu-MOFs on hydrogen peroxide sensing, despite its huge potential in this regard. This systematic review assessed published articles on the subject using the Web of Science. The included studies were assessed in terms of quality using the risk of bias assessment criteria. Out of the 101 screened articles, 50 studies were eligible and included in this review. Non-enzymatic detection of hydrogen peroxide using copper-based MOFs exhibited better performance in terms of limit of detection, sensitivity, and linear response than enzyme-assisted detection. Ligand type and Cu-MOF synthetic techniques demonstrated a great effect on the structural property of the synthesized MOF, which in turn improved its catalytic property. Based on the available data in the reviewed articles. Cu-MOFs has great potential for use as commercial hydrogen peroxide sensor. The successful design of a sensitive, accurate, and stable hydrogen peroxide sensor will be a significant breakthrough for industrial, medical, and environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(Reproduced with permission from the publisher)

Fig. 6
Fig. 7

(Reproduced with permission from the publisher)

Fig. 8 

(Reproduced with permission from the publisher). b Amperometric response of CuCo–Cu@CoCH with various interferences [38] (Reproduced with permission from the publisher). c Current response of: of h-PtCu/C [27] d current response of PtCu@MOF-74/C [27] (Reproduced with permission from the publisher). e Current response of CuxO NPs@ZIF-8/GCE and f CuxO NPs/GCE to 50 μM H2O2, glucose, d-fructose, sucrose, α-lactose, l-cysteine, AA, UA and DA [41] (Reproduced with permission from the publisher).

Similar content being viewed by others

References

  1. A. Badoei-dalfard, N. Sohrabi, Z. Karami, G. Sargazi, Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 141, 111420 (2019). https://doi.org/10.1016/j.bios.2019.111420

    Article  CAS  PubMed  Google Scholar 

  2. B. Halliwell, M.V. Clement, L.H. Long, Hydrogen peroxide in the human body. FEBS Lett. 486, 10–13 (2000). https://doi.org/10.1016/S0014-5793(00)02197-9

    Article  CAS  PubMed  Google Scholar 

  3. M. Ghanei-Motlagh, M.A. Taher, M. Fayazi et al., Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc. 166, B367–B372 (2019). https://doi.org/10.1149/2.0521906jes

    Article  CAS  Google Scholar 

  4. J. Zhao, H. Yang, W. Wu et al., Flexible nickel–cobalt double hydroxides micro-nano arrays for cellular secreted hydrogen peroxide in-situ electrochemical detection. Anal. Chim. Acta 1143, 135–143 (2021). https://doi.org/10.1016/j.aca.2020.11.047

    Article  CAS  PubMed  Google Scholar 

  5. H. Sies, Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289, 8735–8741 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. F.J. Pérez, S. Rubio, An improved chemiluminescence method for hydrogen peroxide determination in plant tissues. Plant Growth Regul. 48, 89–95 (2006). https://doi.org/10.1007/s10725-005-5089-y

    Article  CAS  Google Scholar 

  7. S.A. Hira, M. Nallal, K. Rajendran et al., Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal–organic framework based electrochemical sensor. Anal. Chim. Acta 1118, 26–35 (2020). https://doi.org/10.1016/j.aca.2020.04.043

    Article  CAS  PubMed  Google Scholar 

  8. T.P. Szatrowski, C.F. Nathan, Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798 (1991)

    CAS  PubMed  Google Scholar 

  9. L. Zhang, F. Yuan, X. Zhang, L. Yang, Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chem. Cent. J. 5, 75 (2011). https://doi.org/10.1186/1752-153X-5-75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Sankarasubramanian, K.J. Babu, P. Soundarrajan et al., A new catalyst Ti doped CdO thin film for non-enzymatic hydrogen peroxide sensor application. Sensors Actuators, B Chem. 285, 164–172 (2019). https://doi.org/10.1016/j.snb.2018.12.161

    Article  CAS  Google Scholar 

  11. S. Sardaremelli, H. Razmi, M. Hasanzadeh, N. Shadjou, A novel bioassay for the monitoring of hydrogen peroxide in human plasma samples based on binding of horseradish peroxidase-conjugated prostate specific antigen to poly (toluidine blue) as imprinted polymer receptor. Int. J. Biol. Macromol. 145, 311–324 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.195

    Article  CAS  PubMed  Google Scholar 

  12. L. Jiang, Y. Zhao, P. Zhao et al., Electrochemical sensor based on reduced graphene oxide supported dumbbell-shaped CuCo2O4 for real-time monitoring of H2O2 released from cells. Microchem. J. 160, 105521 (2021). https://doi.org/10.1016/j.microc.2020.105521

    Article  CAS  Google Scholar 

  13. R. Zhang, W. Chen, Fe3C-functionalized 3D nitrogen-doped carbon structures for electrochemical detection of hydrogen peroxide. Sci. Bull. 60, 522–531 (2015). https://doi.org/10.1007/s11434-015-0740-0

    Article  CAS  Google Scholar 

  14. H. Zhong, M. Ghorbani-Asl, K.H. Ly et al., Synergistic electroreduction of carbon dioxide to carbon monoxide on bimetallic layered conjugated metal–organic frameworks. Nat. Commun. 11, 1409 (2020). https://doi.org/10.1038/s41467-020-15141-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. X. Li, Q.-L. Zhu, MOF-based materials for photo- and electrocatalytic CO2 reduction. EnergyChem 2, 100033 (2020). https://doi.org/10.1016/j.enchem.2020.100033

    Article  Google Scholar 

  16. W. Ling, Y. Hao, H. Wang et al., A novel Cu-metal–organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology 30, 424002 (2019). https://doi.org/10.1088/1361-6528/ab30b6

    Article  CAS  PubMed  Google Scholar 

  17. S. Sun, J. Luo, Y. Qian et al., Metal–organic framework derived honeycomb Co9S8@C composites for high-performance supercapacitors. Adv. Energy Mater. 8, 1–9 (2018). https://doi.org/10.1002/aenm.201801080

    Article  CAS  Google Scholar 

  18. M.J. Page, J.E. McKenzie, P.M. Bossuyt et al., The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (2021). https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  19. S. Sornambikai, H. Amir, G. Bhuvaneshwari et al., Review—systematic review on electrochemical biosensing of breast cancer miRNAs to develop alternative DCIS diagnostic tool. ECS Sensors Plus 1, 021602 (2022). https://doi.org/10.1149/2754-2726/ac75c5

    Article  Google Scholar 

  20. X. Guo, C. Lin, M. Zhang et al., 2D/3D copper-based metal–organic frameworks for electrochemical detection of hydrogen peroxide. Front. Chem. (2021). https://doi.org/10.3389/fchem.2021.743637

    Article  PubMed  PubMed Central  Google Scholar 

  21. D. He, F. Zhou, L. Sun et al., Gold/copper-based metal–organic framework/glassy carbon electrode as high efficient electrochemical sensor for determination of hydrogen peroxide. Int. J. Electrochem. Sci. 15, 11238–11249 (2020). https://doi.org/10.20964/2020.11.04

    Article  CAS  Google Scholar 

  22. A.M. Golsheikh, G.-Y. Yeap, F.K. Yam, H.S. Lim, Facile fabrication and enhanced properties of copper-based metal organic framework incorporated with graphene for non-enzymatic detection of hydrogen peroxide. Synth. Met. 260, 116272 (2020). https://doi.org/10.1016/j.synthmet.2019.116272

    Article  CAS  Google Scholar 

  23. H.-Y. Liu, J.-J. Wen, H.-X. Xu et al., Development of a copper-based metal organic electrode for nitrite sensing. J. AOAC Int. 104, 157–164 (2021). https://doi.org/10.1093/jaoacint/qsaa089

    Article  PubMed  Google Scholar 

  24. Y. Zhou, C. Li, Y. Hao et al., Oriented growth of cross-linked metal–organic framework film on graphene surface for non-enzymatic electrochemical sensor of hydrogen peroxide in disinfectant. Talanta 188, 282–287 (2018). https://doi.org/10.1016/j.talanta.2018.05.078

    Article  CAS  PubMed  Google Scholar 

  25. J. Li, Z.-X. Liu, Y.-X. Li et al., 2-Methylimidazole-assisted morphology modulation of a copper-based metal–organic framework transducer for enhanced electrochemical peroxidase-like activity. Electroanalysis (2021). https://doi.org/10.1002/elan.202100423

    Article  Google Scholar 

  26. J. Ma, G. Chen, W. Bai, J. Zheng, Amplified electrochemical hydrogen peroxide sensing based on Cu-porphyrin metal–organic framework nanofilm and G-quadruplex-hemin DNAzyme. ACS Appl. Mater. Interfaces 12, 58105–58112 (2020). https://doi.org/10.1021/acsami.0c09254

    Article  CAS  PubMed  Google Scholar 

  27. J. Yang, H. Ye, F. Zhao, B. Zeng, A novel CuxO nanoparticles@ZIF-8 composite derived from core-shell metal–organic frameworks for highly selective electrochemical sensing of hydrogen peroxide. ACS Appl. Mater. Interfaces 8, 20407–20414 (2016). https://doi.org/10.1021/acsami.6b06436

    Article  CAS  PubMed  Google Scholar 

  28. L. Wang, H. Yang, J. He et al., Cu-hemin metal–organic-frameworks/chitosan-reduced graphene oxide nanocomposites with peroxidase-like bioactivity for electrochemical sensing. Electrochim. Acta 213, 691–697 (2016). https://doi.org/10.1016/j.electacta.2016.07.162

    Article  CAS  Google Scholar 

  29. H. Yao, W. Zhang, T. Yan et al., Electrochemical sensor for detection of hydrogen peroxide based on Cu-doped ZIF-8 material modified with chitosan and cytochrome C. Int. J. Electrochem. Sci. (2022). https://doi.org/10.20964/2022.06.68

    Article  Google Scholar 

  30. D. Cheng, P. Li, X. Zhu et al., Enzyme-free electrochemical detection of hydrogen peroxide based on the three-dimensional flower-like Cu-based metal organic frameworks and MXene nanosheets(dagger). Chi. J. Chem. 39, 2181–2187 (2021). https://doi.org/10.1002/cjoc.202100158

    Article  CAS  Google Scholar 

  31. J. Ma, W. Bai, J. Zheng, Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal–organic framework nanosheets. Microchim. Acta (2019). https://doi.org/10.1007/s00604-019-3551-1

    Article  Google Scholar 

  32. Y. Li, L. Hou, Z. Liu et al., A sensitive electrochemical MUC1 sensing platform based on electroactive Cu-MOFs decorated by AuPt nanoparticles. J. Electrochem. Soc. 167, 087502 (2020). https://doi.org/10.1149/1945-7111/ab88b9

    Article  CAS  Google Scholar 

  33. B. Li, D.-R. Kong, L.-H. Liu et al., Facile synthesis of copper and carbon co-doped peanut shell-like Mo2C/Mo3P electrocatalysts for ultra-sensitive amperometric detection of hydrogen peroxide. Microchem. J. (2022). https://doi.org/10.1016/j.microc.2022.107795

    Article  PubMed  PubMed Central  Google Scholar 

  34. W. Ling, Y. Hao, H. Wang et al., A novel Cu–metal–organic framework with two-dimensional layered topology for electrochemical detection using flexible sensors. Nanotechnology (2019). https://doi.org/10.1088/1361-6528/ab30b6

    Article  PubMed  Google Scholar 

  35. M. Hesari, R. Jia, M.V. Mirkin, Metal–organic-framework-based electrochemical nanosensor for hydrogen peroxide. ChemElectroChem (2022). https://doi.org/10.1002/celc.202200373

    Article  Google Scholar 

  36. Y. Wang, W. Cao, L. Wang et al., Electrochemical determination of 2,4,6-trinitrophenol using a hybrid film composed of a copper-based metal organic framework and electroreduced graphene oxide. Microchim. Acta 185, 1–9 (2018). https://doi.org/10.1007/s00604-018-2857-8

    Article  CAS  Google Scholar 

  37. K. Karami, P. Bayat, H. Khosropour et al., Synthesis and characterization of a new Cu (BHB)(2)/Fe-MIL-101-NH2 composite: a novel hydrogen peroxide sensor based upon the bimetallic complex. J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abdb46

    Article  Google Scholar 

  38. N. Han, S. Hu, L. Zhang et al., CuCo–Cu@CoCH stamen-like nanoarray prepared by co-reduction for electrochemical detection of hydrogen peroxide. Appl. Surf. Sci. (2022). https://doi.org/10.1016/j.apsusc.2021.151879

    Article  Google Scholar 

  39. E. Zhou, Y. Zhang, Y. Li, X. He, Cu(II)-based MOF immobilized on multiwalled carbon nanotubes: synthesis and application for nonenzymatic detection of hydrogen peroxide with high sensitivity. Electroanalysis 26, 2526–2533 (2014). https://doi.org/10.1002/elan.201400341

    Article  CAS  Google Scholar 

  40. W. Dang, Y. Sun, H. Jiao et al., AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J. Electroanal. Chem. 856, 113592 (2020). https://doi.org/10.1016/j.jelechem.2019.113592

    Article  CAS  Google Scholar 

  41. L. Chen, T. Wang, Y. Xue et al., Rationally armoring PtCu alloy with metal–organic frameworks as highly selective nonenzyme electrochemical sensor. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/admi.201801168

    Article  PubMed  Google Scholar 

  42. H. Chen, T. Yang, F. Liu, W. Li, Electrodeposition of gold nanoparticles on Cu-based metal–organic framework for the electrochemical detection of nitrite. Sensors Actuators B-Chem. 286, 401–407 (2019). https://doi.org/10.1016/j.snb.2018.10.036

    Article  CAS  Google Scholar 

  43. W. Meng, S. Xu, L. Dai et al., An enhanced sensitivity towards H2O2 reduction based on a novel Cu metal–organic framework and acetylene black modified electrode. Electrochim. Acta 230, 324–332 (2017). https://doi.org/10.1016/j.electacta.2017.02.017

    Article  CAS  Google Scholar 

  44. B. Wang, K. Kang, X. Ji et al., Multifunctional encapsulating gold nanoparticles into Cu-hemin/metal–organic frameworks for catechol electrochemical detection on graphene-based electrode. NANO (2020). https://doi.org/10.1142/S1793292020501556

    Article  Google Scholar 

  45. S.E. Kim, A. Muthurasu, Highly oriented nitrogen-doped carbon nanotube integrated bimetallic cobalt copper organic framework for non-enzymatic electrochemical glucose and hydrogen peroxide sensor. Electroanalysis 33, 1333–1345 (2021). https://doi.org/10.1002/elan.202060566

    Article  CAS  Google Scholar 

  46. B. Li, L.-H. Liu, X.-F. Zhang et al., Echinus-like Cu-Mo2C/C yolk-shell composites for ultrasensitive detection of hydrogen peroxide. Electrochim Acta (2021). https://doi.org/10.1016/j.electacta.2021.137908

    Article  PubMed  PubMed Central  Google Scholar 

  47. M. Zhu, Y. Huang, Q. Deng et al., Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv. Energy Mater. 6, 1600969 (2016). https://doi.org/10.1002/aenm.201600969

    Article  CAS  Google Scholar 

  48. S. Zhou, L. Jiang, J. Zhang et al., Fabrication of Cu-hemin metal–organic-frameworks nanoflower supported on three-dimensional reduced graphene oxide for the amperometric detection of H2O2. Microchim. Acta (2021). https://doi.org/10.1007/s00604-021-04795-0

    Article  Google Scholar 

  49. B. Li, L.-H. Liu, X.-F. Zhang et al., Novel neuron-network-like Cu-MoO2/C composite derived from bimetallic organic framework for highly efficient detection of hydrogen peroxide. Anal. Chim. Acta 1143, 73–83 (2021). https://doi.org/10.1016/j.aca.2020.11.038

    Article  CAS  PubMed  Google Scholar 

  50. J. Ma, J. Zheng, Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal–organic framework nanosheets. Microchim. Acta (2020). https://doi.org/10.1007/s00604-020-04355-y

    Article  Google Scholar 

  51. N.M. Umesh, K.K. Rani, R. Devasenathipathy et al., Preparation of Co-MOF derived Co(OH)2/multiwalled carbon nanotubes as an efficient bifunctional electro catalyst for hydrazine and hydrogen peroxide detections. J. Taiwan Inst. Chem. Eng. 93, 79–86 (2018). https://doi.org/10.1016/j.jtice.2018.08.013

    Article  CAS  Google Scholar 

  52. C. Li, T. Zhang, J. Zhao et al., Boosted Sensor performance by surface modification of bifunctional rht-type metal–organic framework with nanosized electrochemically reduced graphene oxide. ACS Appl. Mater. Interfaces 9, 2984–2994 (2017). https://doi.org/10.1021/acsami.6b13788

    Article  CAS  PubMed  Google Scholar 

  53. X. Qiao, M. Arsalan, X. Ma et al., A hybrid of ultrathin metal–organic framework sheet and ultrasmall copper nanoparticles for detection of hydrogen peroxide with enhanced activity. Anal. Bioanal. Chem. 413, 839–851 (2021). https://doi.org/10.1007/s00216-020-03038-0

    Article  CAS  PubMed  Google Scholar 

  54. L. Zhang, H. Liang, X. Ma et al., A vertically aligned CuO nanosheet film prepared by electrochemical conversion on Cu-based metal–organic framework for non-enzymatic glucose sensors. Microchem. J. 146, 479–485 (2019). https://doi.org/10.1016/j.microc.2019.01.042

    Article  CAS  Google Scholar 

  55. L. Xu, Y. Xin, Y. Ma, P. Wang, Copper and molybdenum dioxide co-doped octahedral porous carbon framework for high sensitivity electrochemical detection of hydrogen peroxide. Ionics (Kiel) 28, 919–925 (2022). https://doi.org/10.1007/s11581-021-04294-5

    Article  CAS  Google Scholar 

  56. B. Li, L.-H.L.L. Liu, X.J.X.-F.X. Zhang et al., Smart nanocomposites of Cu-hemin metal–organic frameworks for electrochemical glucose biosensing. Microchim. Acta 9, 3766–3776 (2020). https://doi.org/10.1002/adfm.202102855

    Article  CAS  Google Scholar 

  57. M. Hassan, Y. Jiang, X. Bo, M. Zhou, Sensitive nonenzymatic detection of hydrogen peroxide at nitrogen-doped graphene supported-CoFe nanoparticles. Talanta 188, 339–348 (2018). https://doi.org/10.1016/j.talanta.2018.06.003

    Article  CAS  PubMed  Google Scholar 

  58. D. Zhang, J. Zhang, R. Zhang et al., 3D porous metal–organic framework as an efficient electrocatalyst for nonenzymatic sensing application. Talanta 144, 1176–1181 (2015). https://doi.org/10.1016/j.talanta.2015.07.091

    Article  CAS  PubMed  Google Scholar 

  59. H.T. Zhu, Y.Y. Ma, J. Du et al., Efficient electrochemical detection of hydrogen peroxide based on silver-centered preyssler-type polyoxometalate hybrids. Inorg. Chem. (2022). https://doi.org/10.1021/acs.inorgchem.2c00244

    Article  PubMed  Google Scholar 

  60. Q. Wang, Y. Yang, F. Gao et al., Graphene oxide directed one-step synthesis of flowerlike graphene@HKUST-1 for enzyme-free detection of hydrogen peroxide in biological samples. ACS Appl. Mater. Interfaces 8, 32477–32487 (2016). https://doi.org/10.1021/acsami.6b11965

    Article  CAS  PubMed  Google Scholar 

  61. H. Cui, S. Cui, S. Zhang et al., Cu-MOF/hemin: a bionic enzyme with excellent dispersity for the determination of hydrogen peroxide released from living cells. Analyst 146, 5951–5961 (2021). https://doi.org/10.1039/d1an01323h

    Article  CAS  PubMed  Google Scholar 

  62. X. Liu, L. Ai, J. Jiang, Interconnected porous hollow CuS microspheres derived from metal–organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol. 283, 539–548 (2015). https://doi.org/10.1016/j.powtec.2015.06.016

    Article  CAS  Google Scholar 

  63. J. Li, K.-K. Lu, L.-H. Xu et al., Multi-tailoring of a modified MOF-derived CuxO electrochemical transducer for enhanced hydrogen peroxide sensing. Analyst 147, 72–79 (2021). https://doi.org/10.1039/d1an01864g

    Article  CAS  PubMed  Google Scholar 

  64. L. Wu, Z.-W. Lu, Y. Ma et al., Cu(II) metal–organic framework encapsulated in carbon paste electrode for high-performance non-enzymatic glucose sensing. Chin. J. Anal. Chem. 48, e20038–e20046 (2020). https://doi.org/10.1016/S1872-2040(20)60006-8

    Article  Google Scholar 

  65. Z. Li, Y. Jiang, C. Liu et al., Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection. Environ. Sci. 5, 1834–1843 (2018). https://doi.org/10.1039/c8en00498f

    Article  CAS  Google Scholar 

  66. M. Naseri, L. Fotouhi, A. Ehsani, Nanostructured metal organic framework modified glassy carbon electrode as a high efficient non-enzymatic amperometric sensor for electrochemical detection of H2O2. J. Electrochem. Sci. Technol. 9, 28–36 (2018). https://doi.org/10.33961/JECST.2018.9.1.28

    Article  CAS  Google Scholar 

  67. Z. Liang, D. Ou, D. Sun et al., Ultrasensitive biosensor for microRNA-155 using synergistically catalytic nanoprobe coupled with improved cascade strand displacement reaction. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.111744

    Article  PubMed  Google Scholar 

  68. J. Zhu, W. Nie, Q. Wang et al., In situ growth of copper oxide-graphite carbon nitride nanocomposites with peroxidase-mimicking activity for electrocatalytic and colorimetric detection of hydrogen peroxide. Carbon 129, 29–37 (2018). https://doi.org/10.1016/j.carbon.2017.11.096

    Article  CAS  Google Scholar 

  69. D. Cheng, X. Xiao, X. Li et al., A non-enzymatic electrochemical sensing platform based on hemin@MOF composites for detecting hydrogen peroxide and DNA. J. Electrochem. Soc. 165, B885–B892 (2018). https://doi.org/10.1149/2.0841816jes

    Article  CAS  Google Scholar 

  70. D. Wu, Z. Xu, T. Zhang et al., Cu2O/CuO@rGO heterostructure derived from metal–organic-frameworks as an advanced electrocatalyst for non-enzymatic electrochemical H2O2 sensor. RSC Adv. 6, 103116–103123 (2016). https://doi.org/10.1039/c6ra23551d

    Article  CAS  Google Scholar 

  71. C. Zhang, D. Zhang, Z. Ma, H. Han, Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15–3. Biosens. Bioelectron. 137, 1–7 (2019). https://doi.org/10.1016/j.bios.2019.04.049

    Article  CAS  PubMed  Google Scholar 

  72. S. Dong, L. Peng, G. Suo et al., Metal complexes of 4,4′-bipyridine: characterization, electrochemical performance and application in high sensitivity detection of H2O2. J. Electrochem. Soc. 163, H775–H780 (2016). https://doi.org/10.1149/2.0611609jes

    Article  CAS  Google Scholar 

  73. C. Zhang, M. Wang, L. Liu et al., Electrochemical investigation of a new Cu-MOF and its electrocatalytic activity towards H2O2 oxidation in alkaline solution. Electrochem. Commun. 33, 131–134 (2013). https://doi.org/10.1016/j.elecom.2013.04.026

    Article  CAS  Google Scholar 

  74. W. Li, Y. Yang, C. Ma et al., A sandwich-type electrochemical immunosensor for ultrasensitive detection of CEA based on core–shell Cu2O@Cu-MOF@Au NPs nanostructure attached with HRP for triple signal amplification. J. Mater. Sci. 55, 13980–13994 (2020). https://doi.org/10.1007/s10853-020-04904-z

    Article  CAS  Google Scholar 

  75. C. Li, R. Wu, J. Zou et al., MNPs@anionic MOFs/ERGO with the size selectivity for the electrochemical determination of H2O2 released from living cells. Biosens. Bioelectron. 116, 81–88 (2018). https://doi.org/10.1016/j.bios.2018.05.045

    Article  CAS  PubMed  Google Scholar 

  76. A.K. Singh, N. Jaiswal, R.K. Gautam, I. Tiwari, Development of g-C3N4/Cu-DTO MOF nanocomposite based electrochemical sensor towards sensitive determination of an endocrine disruptor BPSIP. J. Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.115170

    Article  Google Scholar 

  77. Y. Zhang, Y. Zhang, L. Li et al., One-step in situ growth of high-density POMOFs films on carbon cloth for the electrochemical detection of bromate. J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.113939

    Article  Google Scholar 

  78. C. Wei, X. Li, F. Xu et al., Metal organic framework-derived anthill-like Cu@carbon nanocomposites for nonenzymatic glucose sensor. Anal. Methods 6, 1550–1557 (2014). https://doi.org/10.1039/c3ay41764f

    Article  CAS  Google Scholar 

  79. J.J. Lu, J.J. Liang, H.Y. Lin et al., Four Anderson-type [TeMo6O24]6–-based metal–organic complexes with a new bis(pyrimidine)-bis(amide): multifunctional electrochemical and adsorption performances. CrystEngComm 24, 3921–3927 (2022). https://doi.org/10.1039/d2ce00504b

    Article  CAS  Google Scholar 

  80. S. Wang, Y. Yao, J. Zhao et al., A novel electrochemical sensor for glyphosate detection based on Ti3C2Tx/Cu-BTC nanocomposite. RSC Adv. 12, 5164–5172 (2022). https://doi.org/10.1039/d1ra08064d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. L. Ding, F. Yan, Y. Zhang et al., Microflowers comprised of Cu/CuxO/NC nanosheets as electrocatalysts and horseradish peroxidase mimics. ACS Appl. Nano Mater. 3, 617–623 (2020). https://doi.org/10.1021/acsanm.9b02156

    Article  CAS  Google Scholar 

  82. W. Huang, Y. Xu, Z. Wang et al., Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta (2022). https://doi.org/10.1016/j.talanta.2022.123612

    Article  PubMed  PubMed Central  Google Scholar 

  83. K.C. Chen, H.L. Zhao, Z.X. Wang, M.B. Lan, Three-dimensional graphene-like homogeneous carbon architecture loaded with gold-platinum for the electrochemical detection of circulating tumor DNA. Mater. Today Chem. (2022). https://doi.org/10.1016/j.mtchem.2022.100892

    Article  Google Scholar 

  84. L. Wang, T. Meng, H. Jia et al., Electrochemical study of hydrazine oxidation by leaf-shaped copper oxide loaded on highly ordered mesoporous carbon composite. J. Colloid Interface Sci. 549, 98–104 (2019). https://doi.org/10.1016/j.jcis.2019.04.063

    Article  CAS  PubMed  Google Scholar 

  85. Z. Chen, Z. Jing-Rui, H. Chao et al., Synthesis of porous CuO based on an etching strategy and application in electrochemical glucose sensing. Chin. J. Inorg. Chem. 37, 2249–2259 (2021). https://doi.org/10.11862/CJIC.2021.256

    Article  CAS  Google Scholar 

  86. A. Tian, M. Yang, H. Ni et al., Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors. Transit. Met. Chem. 43, 621–633 (2018). https://doi.org/10.1007/s11243-018-0250-4

    Article  CAS  Google Scholar 

  87. S. Motoc, C. Cretu, O. Costisor et al., Cu(I) coordination complex precursor for randomized CuOx microarray loaded on carbon nanofiber with excellent electrocatalytic performance for electrochemical glucose detection. Sensors (2019). https://doi.org/10.3390/s19245353

    Article  PubMed  PubMed Central  Google Scholar 

  88. A.-X. Tian, M.-L. Yang, N. Sun et al., A series of pH-dependent POM-based compounds as photocatalysts and electrochemical sensors. Polyhedron 155, 337–350 (2018). https://doi.org/10.1016/j.poly.2018.08.065

    Article  CAS  Google Scholar 

  89. L. Zhang, C. Ye, X. Li et al., A CuNi/C nanosheet array based on a metal–organic framework derivate as a supersensitive non-enzymatic glucose sensor. Nano-Micro. Lett. (2018). https://doi.org/10.1007/s40820-017-0178-9

    Article  Google Scholar 

  90. X. Chen, J. Dong, K. Chi et al., Electrically conductive metal–organic framework thin film-based on-chip micro-biosensor: a platform to unravel surface morphology-dependent biosensing. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202102855

    Article  PubMed  PubMed Central  Google Scholar 

  91. Y. Ai, N. Gao, Q. Wang et al., Electrosynthesis of HKUST-1 on a carbon-nanotube-modified electrode and its application for detection of dihydroxybenzene isomers. J. Electroanal. Chem. (2020). https://doi.org/10.1016/j.jelechem.2020.114161

    Article  Google Scholar 

  92. H. Zhao, X. Du, H. Dong et al., Electrochemical immunosensor based on Au/Co-BDC/MoS2 and DPCN/MoS2 for the detection of cardiac troponin I. Biosens. Bioelectron. (2021). https://doi.org/10.1016/j.bios.2020.112883

    Article  PubMed  PubMed Central  Google Scholar 

  93. M.M. Habibi, M. Mousavi, Z. Shadman, J.B. Ghasemi, Preparation of a nonenzymatic electrochemical sensor based on a g-C3N4/MWO4 (M: Cu, Mn Co, Ni) composite for the determination of H2O2. New J. Chem. 46, 3766–3776 (2022). https://doi.org/10.1039/d1nj05711a

    Article  CAS  Google Scholar 

  94. S. Hu, Y. Jiang, Y. Wu et al., Enzyme-free tandem reaction strategy for surface-enhanced Raman scattering detection of glucose by using the composite of Au nanoparticles and porphyrin-based metal–organic framework. ACS Appl. Mater. Interfaces 12, 55324–55330 (2020). https://doi.org/10.1021/acsami.0c12988

    Article  CAS  PubMed  Google Scholar 

  95. Y. Lu, D. Wu, Z. Li et al., MOFs-derived nano-CuO modified electrode as a sensor for determination of hydrazine hydrate in aqueous medium. Sensors (Switzerland) (2020). https://doi.org/10.3390/s20010140

    Article  PubMed Central  Google Scholar 

  96. X. Ma, K. Tang, K. Lu et al., Programming a hollow core-shell CuS@CuSe heteromicrocubes synergizing superior multienzyme activity function as enhanced biosensing platforms. Sensors Actuators B-Chem. (2022). https://doi.org/10.1016/j.snb.2022.131592

    Article  Google Scholar 

  97. Z. Qu, S. Li, W. Feng et al., Porous carbon substrate improving the sensing performance of copper nanoparticles toward glucose. Nanoscale Res. Lett. (2021). https://doi.org/10.1186/s11671-021-03579-y

    Article  PubMed  PubMed Central  Google Scholar 

  98. D. Cheng, T. Wang, G. Zhang et al., A novel nonenzymatic electrochemical sensor based on double-shelled CuCo2O4 hollow microspheres for glucose and H2O2. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153014

    Article  Google Scholar 

  99. C. Gong, Y. Shen, Y. Song, L. Wang, On–off ratiometric electrochemical biosensor for accurate detection of glucose. Electrochim. Acta 235, 488–494 (2017). https://doi.org/10.1016/j.electacta.2017.03.144

    Article  CAS  Google Scholar 

  100. L. Wang, C. Gong, Y. Shen et al., Conjugated schiff base polymer foam/macroporous carbon integrated electrode for electrochemical sensing. Sensors Actuators B Chem. 265, 227–233 (2018). https://doi.org/10.1016/j.snb.2018.03.041

    Article  CAS  Google Scholar 

  101. S. Yang, M. Li, Z. Guo et al., Facile synthesis of Fe-MOF/rGO nanocomposite as an efficient electrocatalyst for nonenzymatic H2O2 sensing. Int. J. Electrochem. Sci. 14, 7703–7716 (2019). https://doi.org/10.20964/2019.08.42

    Article  CAS  Google Scholar 

  102. X. Wang, J. Sun, H. Lin et al., A series of Anderson-type polyoxometalate-based metal–organic complexes: their pH-dependent electrochemical behaviour, and as electrocatalysts and photocatalysts. Dalt. Trans. 45, 12465–12478 (2016). https://doi.org/10.1039/c6dt02216b

    Article  CAS  Google Scholar 

  103. Y. Yang, Q. Wang, W. Qiu et al., Covalent immobilization of Cu-3(btc)(2) at chitosan-electroreduced graphene oxide hybrid film and its application for simultaneous detection of dihydroxybenzene isomers. J. Phys. Chem. C 120, 9794–9803 (2016). https://doi.org/10.1021/acs.jpcc.6b01574

    Article  CAS  Google Scholar 

  104. G. Liu, S. Liang, Q. Li et al., Metal/N-donor-induced versatile structures and properties of seven 0D → 3D complexes based on dpq/dppz and O-bridged tricarboxylate: fluorescence and electrochemical behaviors. CrystEngComm 22, 1209–1219 (2020). https://doi.org/10.1039/c9ce01878f

    Article  CAS  Google Scholar 

  105. Y. Jun, Z. Bao-Yue, T. Ai-Xiang, Four Keggin compounds modified by Tri- and tetra-nuclear metal–organic clusters: structures, selective photocatalytic and Hg2+ recognition characteristics. Chin. J. Inorg. Chem. 36, 1831–1844 (2020). https://doi.org/10.11862/CJIC.2020.218

    Article  CAS  Google Scholar 

  106. S. Hu, Y. Lin, J. Teng et al., In situ deposition of MOF-74(Cu) nanosheet arrays onto carbon cloth to fabricate a sensitive and selective electrocatalytic biosensor and its application for the determination of glucose in human serum. Microchim. Acta (2020). https://doi.org/10.1007/s00604-020-04634-8

    Article  Google Scholar 

  107. L. Li, X. Wang, N. Xu et al., Four octamolybdate complexes constructed from a quinoline-imidazole-monoamide ligand: structures and electrochemical, photocatalytic and magnetic properties. CrystEngComm 22, 8322–8329 (2020). https://doi.org/10.1039/d0ce01239d

    Article  CAS  Google Scholar 

  108. W. Pan, Z. Zheng, X. Wu et al., Facile synthesis of 2D/3D hierarchical NiCu bimetallic MOF for non-enzymatic glucose sensor. Microchem. J. (2021). https://doi.org/10.1016/j.microc.2021.106652

    Article  Google Scholar 

  109. X. Li, Y. Wang, K. Zhou et al., Isomeric organic ligand dominating polyoxometalate-based hybrid compounds: synthesis and as electrocatalysts and pH-sensitive probes. J. Coord. Chem. 71, 468–482 (2018). https://doi.org/10.1080/00958972.2018.1443216

    Article  CAS  Google Scholar 

  110. S.-J. Wang, F. Bigdeli, X.-W. Yan et al., Synthesis of a new binuclear Cu(II) complex: a precise sensor for H2O2 and a proper precursor for preparation of the CuO nanoparticles. J. Organomet. Chem. (2020). https://doi.org/10.1016/j.jorganchem.2020.121507

    Article  Google Scholar 

  111. J. Zhou, X. Li, L. Yang et al., The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 899, 57–65 (2015). https://doi.org/10.1016/j.aca.2015.09.054

    Article  CAS  PubMed  Google Scholar 

  112. M.H. Mahnashi, A.M. Mahmoud, S.A. Alkahtani et al., Facile fabrication of a novel disposable pencil graphite electrode for simultaneous determination of promising immunosuppressant drugs mycophenolate mofetil and tacrolimus in human biological fluids. Anal. Bioanal. Chem. 412, 355–364 (2020). https://doi.org/10.1007/s00216-019-02245-8

    Article  CAS  PubMed  Google Scholar 

  113. S. Yang, N. Xia, M. Li et al., Facile synthesis of a zeolitic imidazolate framework-8 with reduced graphene oxide hybrid material as an efficient electrocatalyst for nonenzymatic H2O2 sensing. RSC Adv. 9, 15217–15223 (2019). https://doi.org/10.1039/c9ra02096a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. X. Wang, X. Bai, H. Lin et al., A series of new polyoxometalate-based metal–organic complexes with different rigid pyridyl-bis(triazole) ligands: assembly, structures and electrochemical properties. RSC Adv. 8, 22676–22686 (2018). https://doi.org/10.1039/c8ra03277g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. L. Feng, J. Yang, S. Zhang et al., A capillary-based fluorimetric platform for the evaluation of glucose in blood using gold nanoclusters and glucose oxidase in the ZIF-8 matrix. Analyst 145, 5273–5279 (2020). https://doi.org/10.1039/d0an01090a

    Article  CAS  PubMed  Google Scholar 

  116. V. Mani, S. Selvaraj, T.K. Peng et al., ZnCo2O4 nanoflowers grown on Co3O4 nanowire-decorated Cu foams for in situ profiling of H2O2 in live cells and biological media. ACS Appl. Nano Mater. 2, 5049–5060 (2019). https://doi.org/10.1021/acsanm.9b00969

    Article  CAS  Google Scholar 

  117. S. Momeni, F. Sedaghati, CuO/Cu2O nanoparticles: a simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchem. J. 143, 64–71 (2018). https://doi.org/10.1016/j.microc.2018.07.035

    Article  CAS  Google Scholar 

  118. H. Cunha-Silva, M. Julia Arcos-Martinez, Dual range lactate oxidase-based screen printed amperometric biosensor for analysis of lactate in diversified samples. Talanta 188, 779–787 (2018). https://doi.org/10.1016/j.talanta.2018.06.054

    Article  CAS  PubMed  Google Scholar 

  119. P. Westbroek, E. Temmerman, Mechanism of hydrogen peroxide oxidation reaction at a glassy carbon electrode in alkaline solution. J. Electroanal. Chem. 482, 40–47 (2000). https://doi.org/10.1016/S0022-0728(00)00009-7

    Article  CAS  Google Scholar 

  120. X. Cai, E.E.L. Tanner, C. Lin et al., The mechanism of electrochemical reduction of hydrogen peroxide on silver nanoparticles. Phys. Chem. Chem. Phys. 20, 1608–1614 (2018). https://doi.org/10.1039/C7CP07492A

    Article  CAS  PubMed  Google Scholar 

  121. S.B. Hall, E.A. Khudaish, A.L. Hart, Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: inhibition by chloride. Electrochim. Acta 45, 3573–3579 (2000). https://doi.org/10.1016/S0013-4686(00)00481-3

    Article  CAS  Google Scholar 

  122. B. He, H. Liu, Electrochemical biosensor based on pyruvate oxidase immobilized AuNRs@Cu2O-NDs as electroactive probes loaded poly (diallyldimethylammonium chloride) functionalized graphene for the detection of phosphate. Sensors Actuators B Chem. 304, 127303 (2020). https://doi.org/10.1016/j.snb.2019.127303

    Article  CAS  Google Scholar 

  123. Y. Li, L. Hou, Z. Liu et al., A sensitive electrochemical MUC1 sensing platform based on electroactive Cu-MOFs decorated by AuPt nanoparticles. J. Electrochem. Soc. (2020). https://doi.org/10.1149/1945-7111/ab88b9

    Article  Google Scholar 

  124. J. Zeng, X. Ding, L. Chen et al., Ultra-small dispersed CuxO nanoparticles on graphene fibers for miniaturized electrochemical sensor applications. RSC Adv. 9, 28207–28212 (2019). https://doi.org/10.1039/c9ra03802g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Z. Li, Y. Jiang, C. Liu et al., Emerging investigator series: dispersed transition metals on a nitrogen-doped carbon nanoframework for environmental hydrogen peroxide detection. Environ. Sci. Nano 5, 1834–1843 (2018). https://doi.org/10.1039/c8en00498f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Shaqra University, dwadami, Saudi Arabia for the provision of research facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have approved the final version of the manuscript. The authors contributed equally.

Corresponding authors

Correspondence to Raja Saad Alruwais or Waheed A. Adeosun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alruwais, R.S., Adeosun, W.A. Electrochemical Detection of Hydrogen Peroxide Using Copper-Based Metal–Organic Frameworks: Nanoarchitectonics and Sensing Performance. J Inorg Organomet Polym 34, 14–37 (2024). https://doi.org/10.1007/s10904-023-02787-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02787-6

Keywords

Navigation