Skip to main content
Log in

Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Through the use of two pyrazole derivatives, one symmetrical, namely 1,1′-bis(3,5-dimethyl-1H-pyrazol-4-yl)methane (H2bdpm), and one asymmetrical, namely 4-propyl-4,5-dihydro-1H-pyrazole (pdp), two polyoxometalate (POM)-based complexes constructed from saturated Wells–Dawson and mono-Cu(II)-substituted Keggin anions, respectively, were hydrothermally synthesized and structurally characterized as [(Cu2(H2bdpm)2)[H2P2W18O62]0.5]·2H2O (1) and [(Cu3(pdp)6Cl2)(H5PMo11CuO39)2]·12H2O (2). In complex 1, the bidentate H2bdpm ligands link CuI centers to form a 1D wave-like metal–organic chain. Adjacent chains are parallel with each other, with Wells–Dawson anions occupying the gaps. In complex 2, six pdp ligands are coordinated to three CuII centers to form a trinuclear cluster. Two Cl anions are also coordinated to the copper centers. The mono-Cu(II)-substituted Keggin anions connect the trinuclear clusters to construct a 2D grid-like structure. Both 1 and 2 are semiconducting in nature, with Eg valves of 2.61 and 2.81, respectively. The electrochemical behavior of both complexes has been studied. Carbon paste electrodes of both can be used as electrochemical sensors for the detection of hydrogen peroxide, bromate and nitrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Taleghani S, Mirzaei M, Hosseini HE, Frontera A (2016) Coord Chem Rev 309:84–106

    Article  CAS  Google Scholar 

  2. Zhang YG, Liu CY, Long DL, Cronin L, Tung CH, Wang YF (2016) J Am Chem Soc 138:11097–11100

    Article  CAS  PubMed  Google Scholar 

  3. Lv HJ, Chi YN, Lwusen JV, Kögerle P, Chen ZY, Bacsa J, Geletii YV, Guo WW, Lian TQ, Hill CL (2015) Chem Eur J 21:17363–17370

    Article  CAS  PubMed  Google Scholar 

  4. Wang KY, Bassil BS, Lin ZG, Römer I, Vanhaecht S, Parac-Vogt TN, Pipaón CSD, Galán-Mascarós JR, Fan LY, Cao J, Kortz U (2015) Chem Eur J 21:18168–18176

    Article  CAS  PubMed  Google Scholar 

  5. Walsh JJ, Bond AM, Forster RJ, Keyes TE (2016) Coord Chem Rev 306:217–234

    Article  CAS  Google Scholar 

  6. Ueda T, Kodani K, Ota H, Shiro M, Guo SX, Bosa JF, Bond AM (2017) Inorg Chem 56:3990–4001

    Article  CAS  PubMed  Google Scholar 

  7. Lu Y, Xu Y, Wang EB, Lü J, Hu CW, Xu L (2005) Cryst Growth Des 5:257–260

    Article  CAS  Google Scholar 

  8. Yan BB, Xu Y, Bu XH, Goh NK, Chia LS, Stucky GD (2001) Dalton Trans 13:2009–2014

    Article  CAS  Google Scholar 

  9. Dong BX, Bu FY, Wu YC, Zhao J, Teng YL, Liu WL, Li ZW (2017) Cryst Growth Des 17:5309–5317

    Article  CAS  Google Scholar 

  10. Wang XL, Hu HL, Liu GC, Lin HY, Tian AX (2010) Chem Commun 46:6485–6487

    Article  CAS  Google Scholar 

  11. Wang XL, Qin C, Wang EB, Su ZM, Li YG, Xu L (2006) Angew Chem Int Ed 45:7411–7414

    Article  CAS  Google Scholar 

  12. Tian AX, Yang Y, Ying J, Li N, Lin XL, Zhang JW, Wang XL (2014) Dalton Trans 43:8405–8413

    Article  CAS  PubMed  Google Scholar 

  13. Katsoulis DE (1998) Chem Rev 98:359–388

    Article  CAS  PubMed  Google Scholar 

  14. Sheldrick GM (1997) SHELXS-97, a program for crystal structure refinement. University of Göttingen, (Germany)

  15. Brown ID, Altermatt D (1985) Acta Crystallogr Sect B 41:244–247

    Article  Google Scholar 

  16. Wang HY, Liu HB, Shi T, Chen YG, Ren HY (2016) J Clust Sci 28:1041–1049

    Article  CAS  Google Scholar 

  17. Guo Y, Li XM, Shi T, Li C, Chen YG, Wang HY (2016) Inorg Chem Commun 65:49–53

    Article  CAS  Google Scholar 

  18. Sadakane M, Steckhan E (1998) Chem Rev 98:219–237

    Article  CAS  PubMed  Google Scholar 

  19. Wang XL, Li N, Tian AX, Ying J, Liu HY, Zhang JW, Yang Y (2013) Dalton Trans 42:14856–14865

    Article  CAS  PubMed  Google Scholar 

  20. Sha JQ, Liang LY, Sun JW, Tian AX, Yan PF, Li GM, Wang C (2012) Cryst Growth Des 12:894–901

    Article  CAS  Google Scholar 

  21. Wang XL, Zhang R, Wang X, Lin HY, Liu GC (2016) Inorg Chem 55:6384–6393

    Article  CAS  PubMed  Google Scholar 

  22. Wang P, Wang XP, Jing XY, Zhu GY (2000) Anal Chim Acta 424:51–56

    Article  CAS  Google Scholar 

  23. Sun MH, Li FY, Yu LJ, Wang Y, Xu L (2016) Dalton Trans 45:2417–2421

    Article  CAS  PubMed  Google Scholar 

  24. Wang XL, Sun JJ, Lin HY, Chang ZH, Liu GC, Wang X (2017) CrystEngComm 19:3167–3177

    Article  Google Scholar 

  25. Tian AX, Tian Y, Ni HP, Ji XB, Ning YL, Hou X, Liu GC, Ying J (2016) J Coord Chem 69:2855–2863

    Article  CAS  Google Scholar 

  26. Tian L, Chen L, Liu L, Lu N, Song WB, Xu HD (2016) Sens Actuators B 113:150–155

    Article  CAS  Google Scholar 

  27. Dong BX, Chen HB, Wu YC, Zhao J, Teng YL, Liu WL, Li ZW (2017) Dalton Trans 46:14286–14292

    Article  CAS  PubMed  Google Scholar 

  28. Hassan SS, Liu Y, Sirajuddin, Solangi AR, Bond AM, Zhang J (2013) Anal Chim Acta 803:41–46

    Article  CAS  PubMed  Google Scholar 

  29. Skunik M, Kulesza PJ (2009) Anal Chim Acta 631:153–160

    Article  CAS  PubMed  Google Scholar 

  30. Zuo JW, Zhang ZF, Jiao J, Peng HJ, Zhang D, Ma HY (2016) Sens Actuators B 236:418–424

    Article  CAS  Google Scholar 

  31. Cui JW, Hou SX, Li YH, Cui GH (2017) Dalton Trans 46:16911–16924

    Article  CAS  PubMed  Google Scholar 

  32. Wen T, Zhang DX, Zhang J (2013) Inorg Chem 52:12–14

    Article  CAS  PubMed  Google Scholar 

  33. Kan WQ, Liu B, Yang J, Liu YY, Ma JF (2012) Cryst Growth Des 12:2288–2298

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports of this research by the National Natural Science Foundation of China (Nos. 21571023, and 21101015) and Talent-supporting Program Foundation of Education Office of Liaoning Province (LJQ2012097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aixiang Tian or Jun Ying.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1280 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, A., Yang, M., Ni, H. et al. Use of symmetrical and pendant pyrazole derivatives for the construction of two polyoxometalate-based complexes as electrochemical sensors. Transit Met Chem 43, 621–633 (2018). https://doi.org/10.1007/s11243-018-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0250-4

Navigation