Skip to main content
Log in

Optimization of Rhodamine-B Dye Adsorption Using Moringa olifera Seed Pod Based NC, Phosphorylated NC and ZIF-8/pNC Composites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, nanocellulose (NC), modified nanocellulose (pM-NC) and MOF composites (ZIF-8/pM-NC) were synthesized from Moringa olifera seed pod and were used for the dye adsorption. Samples were synthesized in aqueous media by one pot green methods. The prepared nanocellulose crystals were phosphorylated using orthophosphoric acid. Nano-sized cellulose ester derivatives having phosphoryl side groups were synthesized by the green phosphorylation of nanocrystalline cellulose, using water, then processed with phosphoric acid. Phosphorylated nanocellulose was added in the ZIF-8 precursor solution and sonicated to make MOF- nanocellulose composites. Structural investigation was performed using Fourier Transform Infrared Spectroscopy (FT-IR), which indicated the progressive removal of non-cellulosic constituents. Morphological study was conducted using Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) analysis revealed the increased crystallinity with successive treatments. Removal efficiency of Rhodamine-B dye by nanocellulose, phosphorylated nanocellulose and ZIF-8/pM-NC was studied. Influence of dosage of the adsorbent, pH, temperature and time were analyzed for the cationic dye removal. Increase in pH 6–12 was accompanied by an increase in the rhodamine dye adsorption. Taguchi L9 orthogonal array have been used for designing the experiments and the most influenced factors were selected and modeled by the RSM (BBD) method to obtain the highest percentage of rhodamine dye removal.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All the data required for this article have been provided in the article itself and any information further required will be provided.

Code Availability

This article does not involve any software code.

References

  1. M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: a review. Adv. Colloids Interface. Sci. 209, 172–184 (2014)

    Article  CAS  Google Scholar 

  2. T.G. Ambaye, M. Vaccari, E.D. van Hullebusch, A. Amrane, S. Rtimi, Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. Int. J. Environ. Sci. Technol. 18, 3273–3294 (2021)

    Article  CAS  Google Scholar 

  3. M. Harja, G. Buema, D. Bucur, Recent advances in removal of Congo Red dye by adsorption using an industrial waste. Sci. Rep. 12(1), 6087 (2022)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. M. Dakiky, M. Khamis, A. Manassra, M. Mer’eb, Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents. Adv. Environ. Res. 6(4), 533–540 (2002)

    Article  CAS  Google Scholar 

  5. J. Hu, G. Chen, I.M. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J. Environ. Eng. 132(7), 709–715 (2006)

    Article  CAS  Google Scholar 

  6. Y. Liu, H. Liu, Z. Shen, Nanocellulose based filtration membrane in industrial waste water treatment: a review. Materials 14(18), 5398 (2021)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. P. Phanthong, P. Reubroycharoen, S. Kongparakul, C. Samart, Z. Wang, X. Hao et al., Fabrication and evaluation of nanocellulose sponge for oil/water separation. Carbohydr. Polym. 190, 184–189 (2018)

    Article  PubMed  CAS  Google Scholar 

  8. S. Mondal, Chemical modification of nanocellulose for water purification, in Nanocellulose and Its Composites for Water Treatment Application (CRC Press, Boca Raton, 2021), pp. 51–61

  9. O.M. Ama, U.O. Aigbe, W.W. Anku, O.A. Osibote, K. Pal, Degradation of methylene blue dye and bisphenol-a using expanded graphene–polypyrrole–magnetite nanocomposite. Top. Catal. 63, 1745 (2022)

    Article  Google Scholar 

  10. S. Bhukal, A. Sharma, Rishi, Divya, S. Kumar, B. Deepak, et al., Spirulina based iron oxide nanoparticles for adsorptive removal of crystal violet dye. Top. Catal. 65(19–20), 1675–1685 (2022)

  11. S. Bagyalakshmi, A. Sivakami, K. Pal, R. Sarankumar, C. Mahendran, Manufacturing of electrochemical sensors via carbon nanomaterials novel applications: a systematic review. J. Nanopart. Res. 24(10), 201 (2022)

    Article  CAS  Google Scholar 

  12. N. Nath, A. Kumar, S. Chakroborty, S. Soren, A. Barik, K. Pal, F.G. de Souza Jr, Carbon nanostructure embedded novel sensor implementation for detection of aromatic volatile organic compounds: an organized review. ACS Omega 8(5), 4436–4452 (2023)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. K. Pal, S. Chakroborty, P. Panda, N. Nath, S. Soren, Environmental assessment of wastewater management via hybrid nanocomposite matrix implications—an organized review. Environ. Sci. Pollut. Res. 29(51), 76626–76643 (2022)

    Article  CAS  Google Scholar 

  14. W. Xiao, Z.N. Garba, S. Sun, I. Lawan, L. Wang, M. Lin, Z. Yuan, Preparation and evaluation of an effective activated carbon from white sugar for the adsorption of rhodamine B dye. J. Clean. Prod. 253, 119989 (2020)

    Article  CAS  Google Scholar 

  15. S. Khamparia, D. Jaspal, Investigation of adsorption of Rhodamine B onto a natural adsorbent Argemone mexicana. J. Environ. Manage. 183, 786–793 (2016)

    Article  PubMed  CAS  Google Scholar 

  16. P.P. Selvam, S. Preethi, P. Basakaralingam, N. Thinakaran, A. Sivasamy, S. Sivanesan, Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite. J. Hazard. Mater. 155(1–2), 39–44 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. G. Vyavahare, P. Jadhav, J. Jadhav, R. Patil, C. Aware, D. Patil, R. Gurav, Strategies for crystal violet dye sorption on biochar derived from mango leaves and evaluation of residual dye toxicity. J. Clean. Prod. 207, 296–305 (2019)

    Article  CAS  Google Scholar 

  18. C.V.T. Rigueto, I. Alessandretti, D.H. da Silva, M. Rosseto, R.A. Loss, C.A.Q. Geraldi, Agroindustrial wastes of banana pseudo-stem as adsorbent of textile dye: characterization, kinetic, and equilibrium studies. Chem. Afr. 4(4), 1069–1078 (2021)

    Article  CAS  Google Scholar 

  19. S.A. Saad, K.M. Isa, R. Bahari, Chemically modified sugarcane bagasse as a potentially low-cost biosorbent for dye removal. Desalination 264(1–2), 123–128 (2010)

    Article  CAS  Google Scholar 

  20. O.S. Bello, K.A. Adegoke, O.O. Akinyunni, Preparation and characterization of a novel adsorbent from Moringa oleifera leaf. Appl. Water Sci. 7(3), 1295–1305 (2017)

    Article  CAS  Google Scholar 

  21. W.T. Wulandari, A. Rochliadi, I.M. Arcana, Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse, in IOP Conference Series: Materials Science and Engineering, vol. 107, No. 1 (IOP Publishing, Bristol, 2016), p. 012045

  22. F. Niu, M. Li, Q. Huang, X. Zhang, W. Pan, J. Yang, J. Li, The characteristic and dispersion stability of nanocellulose produced by mixed acid hydrolysis and ultrasonic assistance. Carbohydr. Polym. 165, 197–204 (2017)

    Article  PubMed  CAS  Google Scholar 

  23. Y. Peng, D.J. Gardner, Y. Han, A. Kiziltas, Z. Cai, M.A. Tshabalala, Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013)

    Article  CAS  Google Scholar 

  24. V. Kokol, M. Božič, R. Vogrinčič, A.P. Mathew, Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydr. Polym. 125, 301–313 (2015)

    Article  PubMed  CAS  Google Scholar 

  25. M. Hadid, H. Noukrati, A. Barroug, H. Sehaqui, Phosphorylated cellulose for water purification: a promising material with outstanding adsorption capacity towards methylene blue. Cellulose 28(12), 7893–7908 (2021)

    Article  CAS  Google Scholar 

  26. A.G. Varghese, S.A. Paul, M.S. Latha, Remediation of heavy metals and dyes from wastewater using cellulose-based adsorbents. Environ. Chem. Lett. 17(2), 867–877 (2019)

    Article  CAS  Google Scholar 

  27. A. Radhakrishnan, M. Jaabir, S. Jeyachandran, K. Thrini, A. Vijaya Anand, A. Murugesan, Nanocelluloses for removal of organic dyes from wastewater, in Handbook of Nanocelluloses: Classification, Properties, Fabrication, and Emerging Applications (Springer, Cham, 2022), pp. 1–28

  28. A. Mautner, H.A. Maples, T. Kobkeatthawin, V. Kokol, Z. Karim, K. Li, A. Bismarck, Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. Int. J. Environ. Sci. Technol. 13(8), 1861–1872 (2016)

    Article  CAS  Google Scholar 

  29. A.M. El-Shafei, A.M. Adel, A.A. Ibrahim, M.T. Al-Shemy, Dual functional jute fabric biocomposite with chitosan and phosphorylated nano-cellulose (antimicrobial and thermal stability). Int. J. Biol. Macromol. 124, 733–741 (2019)

    Article  PubMed  CAS  Google Scholar 

  30. A. Mandal, D. Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86(3), 1291–1299 (2011)

    Article  CAS  Google Scholar 

  31. P. Phanthong, A. Abdula, Extraction of nanocellulose from raw apple stem. J. Jpn. Inst. Energy 94(8), 787–793 (2015)

    Article  CAS  Google Scholar 

  32. E. Abraham, P.A. Elbi, B. Deepa, P. Jyotishkumar, L.A. Pothen, S.S. Narine, S. Thomas, X-ray diffraction and biodegradation analysis of green composites of natural rubber/nanocellulose. Polym. Degrad. Stab. 97(11), 2378–2387 (2012)

    Article  CAS  Google Scholar 

  33. A. Kausar, R. Shahzad, S. Asim, S. BiBi, J. Iqbal, N. Muhammad, I.U. Din, Experimental and theoretical studies of Rhodamine B direct dye sorption onto clay-cellulose composite. J. Mol. Liq. 328, 115165 (2021)

    Article  CAS  Google Scholar 

  34. P.M.M. da Silva, N.G. Camparotto, T.F. Neves, V.R. Mastelaro, B. Nunes, C.S.F. Picone, P. Prediger, Instantaneous adsorption and synergic effect in simultaneous removal of complex dyes through nanocellulose/graphene oxide nanocomposites: batch, fixed-bed experiments and mechanism. Environ. Nanotechnol. Monit. Manag. 16, 100584 (2021)

    Google Scholar 

  35. A. Allwar, M.N. Fatima, B. Wiyantoko, Synthesis and characterization of TiO2 nanoparticles doping on cellulose as adsorbent for removal of rhodamine B in aqueous solution. EKSAKTA J. Sci. Data Anal. 2(1), 45–54 (2021)

    Article  Google Scholar 

Download references

Funding

This work is independently funded. No outside organization has provided funding for it.

Author information

Authors and Affiliations

Authors

Contributions

JGV contributed in the synthesis and applications, TNP (professor) contributed in the research plan and conceptualization. NA contributed in designing the experiments of the manuscript.

Corresponding author

Correspondence to T. Niranjana Prabhu.

Ethics declarations

Conflict of interest

There are no conflicts of interest for the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, J.G., Prabhu, T.N. & Asthana, N. Optimization of Rhodamine-B Dye Adsorption Using Moringa olifera Seed Pod Based NC, Phosphorylated NC and ZIF-8/pNC Composites. J Inorg Organomet Polym 33, 3716–3731 (2023). https://doi.org/10.1007/s10904-023-02772-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02772-z

Keywords

Navigation