Skip to main content
Log in

Development of Polymer Composites in Radiation Shielding Applications: A Review

  • Review
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Radiation shielding materials based on composites play a crucial role in safeguarding nuclear-related installations, equipment, and employees from harmful radiation. With the advent of new and challenging nuclear security conditions, the development of radiation-protective materials has undergone significant changes. Thanks to the advancements in science and technology, especially in the field of nanomaterials technology, it is now possible to produce radiation protection materials that offer high all-around performance. This article discusses the current research on composite-based radiation shielding materials. It first describes the current state and distribution of radiation shielding studies worldwide. Then, it categorizes and reviews composite-based radiation protection materials, taking into account the study topic and the field’s requirements. The three broad categories of composite-based radiation protection materials are polymer-based composites, metal-based composites, and fabric-based composites. Space radiation shielding materials are categorized separately (as a point of reference). The mechanical, thermal, and shielding properties of radiation protection materials are briefly discussed here. In addition, the primary research challenges are outlined along with the research methodologies that academics employ to examine properties and property change trends. Finally, a summary of the properties of the radiation protection materials discussed in the complete paper is provided, followed by an analysis of the current research gaps and potential future paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ABS:

Acrylonitrile butadiene styrene

LiH:

Lithium hydride

Am:

Americium

Li2WO4 :

Lithium tungstate

Ag:

Silver

MAC:

Mass attenuation coefficient

Al:

Aluminum

MCP:

Microchannel plate

Al2O3 :

Alumina

MD:

Molecular dynamics

B:

Boron

MEKP:

Methyl ethyl ketone peroxide

Ba:

Barium

Mg:

Magnesium

B4C:

Boron carbide

Mg2Si:

Magnesium silicide

BA:

Boric acid

MgB2 :

Magnesium boride

BaSO4 :

Barium Sulfate

Mo:

Molybdenum

BFNONC:

Ba–Fe–Ni oxide nanocomposites

MoS2 :

Molybdenum disulfide

Bi:

Bismuth

MWCNT:

Multi-walled carbon nanotubes

Bi2O3 :

Bismuth oxide

Na:

Natrium

BiClO:

Bismuth oxychloride

Na2O3 :

Sodium oxide

BaTiO3 :

Barium titanate

NASA:

National aeronautics and space administration

BN:

Boron nitride

Nb:

Niobium

BNNT:

Boron nitride nanotubes

NBC:

Nano boron carbide

BNP:

Bismuth nitrate pentahydrate

Ni:

Nickel

BiBr3 :

Bismuth bromide

NPs:

Nanoparticles

Br:

Bromine

NR:

Natural rubber

C:

Carbon

Pb:

Lead

CaB6 :

Calcium hexaboride

Pb(NO3)2 :

Lead nitrate

CaSi:

Calcium silicide

Pb-B PE:

Lead-boron polyethylene

CaWO4 :

Calcium tungstate

PbO:

Lead oxide

Cd:

Cadmium

PbI2 :

Lead(II) iodide

Cd(NO3)2 :

Cadmium nitrate

PbSO4 :

Lead sulfate

CdTe:

Cadmium telluride

PC:

Polycarbonate

Ce:

Cerium

PE:

Polyethylene

CeO2 :

Cerium oxide

PEEK:

Polyether ether ketone

CMEs:

Coronal mass ejections

PEI:

Polyetherimide

CNT:

Carbon nanotubes

PEP:

Particle environment package

Co:

Cobalt

PERSEO:

Personal radiation shielding for interplanetary missions

CO-6:

Cobalt octoate 6%

PES:

Polyethersulfone

Cr:

Chromium

PET:

Polyethylene terephthalate

Cs:

Cesium

PLA:

Poly(lactic acid)

Cu:

Copper

PMC:

Polymer matrix composites

CuO:

Copper oxide

PMMA:

Poly(methyl methacrylate)

CuZn:

Brass

PP:

Polypropylene

Dy:

Dysprosium

PSE:

Polyethersulphone

EGPET:

Ethylene glycol phenylene terephthalate

PSF:

Polysulfone

EP:

Epoxy resin

PSU/PSF:

Polysulfone

EPDM:

Ethylene propylene diene monomer rubber

PVA:

Poly(vinyl alcohol)

Eu:

Europium

PVC:

Polyvinyl chloride

Fe:

Iron

PVDC:

Polyvinylidene chloride

FeCr:

Ferro Chrome

RB:

Raw bentonite

Ge:

Germanium

RSF:

Radiation shielding film

GCR:

Galactic cosmic rays

RSMs:

Radiation shielding materials

Gd:

Gadolinium

Sb:

Antimony

GO:

Graphene oxide

Si:

Silicon

GRAS:

Geant4 radiation analysis for space

SPA:

South pole-aitken

H:

Hydrogen

SPE:

Solar particle events

HDPE:

High-density polyethylene

SR:

Silicone rubber

Hf:

Hafnium

SWCNT:

Single-walled carbon nanotubes

HGNF:

Hydrogenated graphite nanofibers

Ta:

Tantalum

High-Z:

High atomic number

Ti:

Titanium

HOFA:

Heavy oil fly ash

TiO2 :

Titanium dioxide

HVL:

Half-value layer

Th:

Thorium

HZE:

High charge (Z) and energy

UHMWPE:

Ultra high molecular weight polyethylene

I:

Iodine

UPR:

Unsaturated polyester resin

IEMR:

Ionizing electromagnetic radiation

W:

Tungsten

In:

Indium

W2B:

Tungsten boron

IND:

Improvised nuclear device

WC:

Tungsten carbide

IPA:

Isophthalic acid

WO3 :

Tungsten oxide

IPSE:

Isophthalic polyester

WPIC:

Waste polymer incorporated concrete

ISS:

International space station

wt:

Weight

JUICE:

Jupiter Icy moons explore

Xe:

Xenon

K:

Kalium

Zn:

Zinc

LAT:

Linear attenuation coefficients

μ L :

Linear attenuation coefficients

LBL:

Layer-by-layer

μ/ρ (cm 2 /g):

Mass attenuation coefficient

Li:

Lithium

References

  1. F. Matthew, Spreading temptation: proliferation and peaceful nuclear cooperation agreements. Int. Secur. (2009). https://doi.org/10.1162/isec.2009.34.1.7

    Article  Google Scholar 

  2. M. Fuhrmann, Taking a walk on the supply side: the determinants of civilian nuclear cooperation. J. Conflict Resolut. 53(2), 181–208 (2009). https://doi.org/10.1177/0022002708330288

    Article  Google Scholar 

  3. H.T.P. Hung, P.N. Tuyen, D.T. Tai et al., Assessment of radiation exposure in a nuclear medicine department of an oncology hospital. J. Radiat. Res. Appl. Sci. 16(2), 100564 (2023). https://doi.org/10.1016/j.jrras.2023.100564

    Article  CAS  Google Scholar 

  4. Maik M. Practical Nuclear Medicine. (2016). https://www.semanticscholar.org/paper/42719a0459cf6e423a624de2c6d31e53ededf786

  5. H.O.T. Karakas, C. Baris, A. Elif Ebru et al., An investigation on radiation protection and shielding properties of 16 slice computed tomography (CT) facilities. Int. J. Comput. Exp. Sci. Eng. 4(2), 37–40 (2023). https://doi.org/10.22399/ijcesen.408231

    Article  Google Scholar 

  6. M.A. Smethurst, R.J. Watson, V.C. Baranwal et al., The predictive power of airborne gamma ray survey data on the locations of domestic radon hazards in Norway: a strong case for utilizing airborne data in large-scale radon potential mapping. J. Environ. Radioact. 166(Pt 2), 321–340 (2017). https://doi.org/10.1016/j.jenvrad.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  7. M. Midhun, S. Mathew, R.S. Rejith et al., Comparison of thoron (220Rn) content and gamma radiation level in high background radiation area of Kollam district in Kerala, India. J. Radioanal. Nucl. Chem. 314(1), 177–185 (2017). https://doi.org/10.1007/s10967-017-5378-8

    Article  CAS  Google Scholar 

  8. E. Bedini, T.M. Rasmussen, Use of airborne hyperspectral and gamma-ray spectroscopy data for mineral exploration at the Sarfartoq carbonatite complex, southern West Greenland. Geosci. J. 22(4), 641–651 (2018). https://doi.org/10.1007/s12303-017-0078-5

    Article  CAS  Google Scholar 

  9. T. Loiseau, A.C. Richer-De-Forges, G. Martelet et al., Could airborne gamma-spectrometric data replace lithological maps as co-variates for digital soil mapping of topsoil particle-size distribution? A case study in Western France. Geoderma Reg. 22, e00295 (2020). https://doi.org/10.1016/j.geodrs.2020.e00295

    Article  Google Scholar 

  10. C. Zeng, W. Lai, J. Zhou et al., Application of FSVD algorithm to airborne gamma detection of trace radionuclides in the process of a high radon background. Nucl. Technol. 209(4), 549–559 (2023). https://doi.org/10.1080/00295450.2022.2133515

    Article  Google Scholar 

  11. A.A. Nigm, M.S. Youssef, F.M. Abdelwahab, Airborn gamma-ray spectrometric data as guide for probable hydrocarbon accumulations at Al-Laqitah area, Central Eastern Desert of Egypt. Appl. Radiat. Isot. 132, 38–46 (2018). https://doi.org/10.1016/j.apradiso.2017.10.053

    Article  CAS  PubMed  Google Scholar 

  12. A. Burakowska, M. Kubicki, B. Mysłek-Laurikainen et al., Concentration of 7Be, 210Pb, 40K, 137Cs, 134Cs radionuclides in the ground layer of the atmosphere in the polar (Hornsund, Spitsbergen) and mid-latitudes (Otwock-Świder, Poland) regions. J. Environ. Radioact. 240, 106739 (2021). https://doi.org/10.1016/j.jenvrad.2021.106739

    Article  CAS  PubMed  Google Scholar 

  13. J. Amestoy, P.-Y. Meslin, P. Richon et al., Effects of environmental factors on the monitoring of environmental radioactivity by airborne gamma-ray spectrometry. J. Environ. Radioact. 237, 106695 (2021). https://doi.org/10.1016/j.jenvrad.2021.106695

    Article  CAS  PubMed  Google Scholar 

  14. C. Zeng, W. Lai, H. Lin et al., Weak information extraction of gamma spectrum based on a two-dimensional wavelet transform. Radiat. Phys. Chem. 208, 110914 (2023). https://doi.org/10.1016/j.radphyschem.2023.110914

    Article  CAS  Google Scholar 

  15. E.E. GÖkÇe, O. Celal, A novel shape descriptor for object recognition. Int. J. Comput. Exp. Sci. Eng. 9(1), 1–5 (2023)

    Article  Google Scholar 

  16. S. Friedrich, EU including: development of radiological and nuclear training learning objectives. J. Appl. Math. Phys. 9(8), 2170–2178 (2021). https://doi.org/10.4236/jamp.2021.98136

    Article  Google Scholar 

  17. M.I.R. Adamy, AUKUS and australia’s nuclear-powered submarine: a reinforced strategic culture. J. Hubungan Int. 15(1), 148–165 (2022). https://doi.org/10.20473/jhi.v15i1.33817

    Article  Google Scholar 

  18. V.N. Polovinkin, A.V. Fomichev, Nuclear-powered submarine of royal navy. Shipbuilding 3(856), 25–33 (2021). https://doi.org/10.54068/00394580_2021_3_25

    Article  Google Scholar 

  19. D.G. Press, The deliberate employment of US nuclear weapons: escalation triggers on the Korean Peninsula. J. Peace Nucl. Disarm. 5(sup1), 101–114 (2022). https://doi.org/10.1080/25751654.2022.2062896

    Article  Google Scholar 

  20. M. Gillies, R.G.E. Haylock, Mortality and cancer incidence 1952–2017 in United Kingdom participants in the United Kingdom’s atmospheric nuclear weapon tests and experimental programmes. J. Radiol. Prot. 42(2), 021507 (2022). https://doi.org/10.1088/1361-6498/ac52b4

    Article  Google Scholar 

  21. A. Ibrahim, Utilization of military grade plutonium in generation-IV gas cooled fast reactor. Progress Nucl. Energy 141, 103984 (2021). https://doi.org/10.1016/j.pnucene.2021.103984

    Article  CAS  Google Scholar 

  22. L.W. Townsend, L. Brady, J. Lindegard et al., Nuclear engineering workforce in the United States. J. Appl. Clin. Med. Phys. 23, e13808 (2022). https://doi.org/10.1002/acm2.13808

    Article  PubMed Central  PubMed  Google Scholar 

  23. M. Dong, Z. Suying, G. Changcheng et al., Green and low-carbon upcycling of ludwigite: prepared shields against nuclear radiation hazards and shielding mechanism. Radiat. Phys. Chem. (2023). https://doi.org/10.1016/j.radphyschem.2023.110931

    Article  Google Scholar 

  24. B.K. Cheon, C.L. Kim, K.R. Kim et al., Radiation safety: a focus on lead aprons and thyroid shields in interventional pain management. Korean J. Pain. 31(4), 244–252 (2018). https://doi.org/10.3344/kjp.2018.31.4.244

    Article  PubMed Central  PubMed  Google Scholar 

  25. O. Miry, X.L. Zhang, L.R. Vose et al., Life-long brain compensatory responses to galactic cosmic radiation exposure. Sci. Rep. 11(1), 4292 (2021). https://doi.org/10.1038/s41598-021-83447-y

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. H. Nallabothula, Y. Bhattacharjee, L. Samantara et al., Processing-mediated different states of dispersion of multiwalled carbon nanotubes in PDMS nanocomposites influence EMI shielding performance. ACS Omega 4(1), 1781–1790 (2019). https://doi.org/10.1021/acsomega.8b02920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. H. Fukunaga, K.M. Prise, Non-uniform radiation-induced biological responses at the tissue level involved in the health risk of environmental radiation: a radiobiological hypothesis. Environ. Health. 17(1), 93 (2018). https://doi.org/10.1186/s12940-018-0444-4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. J.C. Chancellor, R.S. Blue, K.A. Cengel et al., Limitations in predicting the space radiation health risk for exploration astronauts. NPJ. Microgr. 4(1), 8 (2018). https://doi.org/10.1038/s41526-018-0043-2

    Article  Google Scholar 

  29. M. Silindir, A.Y. Özer, Sterilization methods and the comparison of E-beam sterilization with gamma radiation sterilization. Fabad J. Pharm. Sci. 34, 43–53 (2011)

    Google Scholar 

  30. J. Fertey, L. Bayer, S. Kahl et al., Low-Energy electron irradiation efficiently inactivates the gram-negative pathogen rodentibacter pneumotropicus-a new method for the generation of bacterial vaccines with increased efficacy. Vaccines (Basel) 8(1), 1–11 (2020). https://doi.org/10.3390/vaccines8010113

    Article  CAS  Google Scholar 

  31. N.J. Abualroos, N.A. Baharul Amin, R. Zainon, Conventional and new lead-free radiation shielding materials for radiation protection in nuclear medicine: a review. Radiat. Phys. Chem. 165, 108439 (2019). https://doi.org/10.1016/j.radphyschem.2019.108439

    Article  CAS  Google Scholar 

  32. V.P. Singh, N.M. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 404, 167–173 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.003

    Article  CAS  Google Scholar 

  33. L. Chang, Y. Zhang, Y. Liu et al., Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding. Nucl. Instrum. Methods Phys. Res. Sect. B 356–357, 88–93 (2015). https://doi.org/10.1016/j.nimb.2015.04.062

    Article  CAS  Google Scholar 

  34. M. Ogawa, Y. Nakajima, R. Kubota et al., Two cases of acute lead poisoning due to occupational exposure to lead. Clin.Toxicol. (Phila) 46(4), 332–335 (2008). https://doi.org/10.1080/15563650701816448

    Article  CAS  PubMed  Google Scholar 

  35. C.L. Hsiao, K.H. Wu, K.S. Wan, Effects of environmental lead exposure on T-helper cell-specific cytokines in children. J. Immunotoxicol. 8(4), 284–287 (2011). https://doi.org/10.3109/1547691X.2011.592162

    Article  CAS  PubMed  Google Scholar 

  36. A. Eid, N. Zawia, Consequences of lead exposure, and it’s emerging role as an epigenetic modifier in the aging brain. Neurotoxicology 56, 254–261 (2016). https://doi.org/10.1016/j.neuro.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  37. X. Fu, Z. Ji, W. Lin et al., The advancement of neutron shielding materials for the storage of spent nuclear fuel. Sci. Technol. Nucl. Install. 2021, 1–13 (2021). https://doi.org/10.1155/2021/5541047

    Article  CAS  Google Scholar 

  38. C. Jumpee, T. Rattanaplome, N. Kumwang, A wide energy range neutron shielding material based on natural rubber and boron. IOP Conf. Ser.: Mater. Sci. Eng. 773(1), 012036 (2020). https://doi.org/10.1088/1757-899x/773/1/012036

    Article  CAS  Google Scholar 

  39. T. Tuna, K. Bayrak, Investigation of the shielding capability of concrete matrixed colemanite reinforced shielding material. J. Eng. Technol. Appl. Sci. 2(2), 57–63 (2017). https://doi.org/10.30931/jetas.336562

    Article  Google Scholar 

  40. A. Feiveson, K. George, M. Shavers et al., Predicting chromosome damage in astronauts participating in international space station missions. Sci. Rep. 11(1), 5293 (2021). https://doi.org/10.1038/s41598-021-84242-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. E.C. Laiakis, M.P. Canadell, V. Grilj et al., Serum lipidomic analysis from mixed neutron/X-ray radiation fields reveals a hyperlipidemic and pro-inflammatory phenotype. Sci. Rep. 9(1), 4539 (2019). https://doi.org/10.1038/s41598-019-41083-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. D. Iguchi, S. Ohashi, G.J.E. Abarro et al., Development of hydrogen-rich benzoxazine resins with low polymerization temperature for space radiation shielding. ACS Omega 3(9), 11569–11581 (2018). https://doi.org/10.1021/acsomega.8b01297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. M. Naito, S. Kodaira, R. Ogawara et al., Investigation of shielding material properties for effective space radiation protection. Life Sci. Space Res. (Amst) 26, 69–76 (2020). https://doi.org/10.1016/j.lssr.2020.05.001

    Article  PubMed  Google Scholar 

  44. A. Gohel, R. Makwana, Multi-layered shielding materials for high energy space radiation. Radiat. Phys. Chem. 197, 110131 (2022). https://doi.org/10.1016/j.radphyschem.2022.110131

    Article  CAS  Google Scholar 

  45. J. Wang, L. Zhang, J. Qu et al., Rapid accident source term estimation (RASTE) for nuclear emergency response in high temperature gas cooled reactor. Ann. Nucl. Energy 147, 107654 (2020). https://doi.org/10.1016/j.anucene.2020.107654

    Article  CAS  Google Scholar 

  46. P.F. Gustafson, S.S. Brar, External gamma-ray dose from short-lived fission products from nuclear weapon tests. Health Phys. 9, 629–634 (1963). https://doi.org/10.1097/00004032-196306000-00007

    Article  CAS  PubMed  Google Scholar 

  47. S. Endo, K. Tanaka, K. Shizuma et al., Estimation of beta-ray skin dose from exposure to fission fallout from the Hiroshima atomic bomb. Radiat. Prot. Dosimetry 149(1), 84–90 (2012). https://doi.org/10.1093/rpd/ncr407

    Article  CAS  PubMed  Google Scholar 

  48. M. Eriksson, P. Lindahl, P. Roos et al., U, Pu, and Am nuclear signatures of the Thule hydrogen bomb debris. Environ. Sci. Technol. 42(13), 4717–4722 (2008). https://doi.org/10.1021/es800203f

    Article  CAS  PubMed  Google Scholar 

  49. O.I. Leipunskii, Harmful effects of the radioactivity from explosion of pure hydrogen bomps and ordinary atomic bombs. Soviet J. Atomic Energy 3(12), 1413–1425 (1957). https://doi.org/10.1007/bf01522507

    Article  CAS  Google Scholar 

  50. I.Y. Cherniavskiy, V.A. Vinnikov, The assessment of radiation hazardous areas considering the spectral analysis of the neutron component of a tactical neutron bomb detonation. Appl. Radiat. Isot. 149, 152–158 (2019). https://doi.org/10.1016/j.apradiso.2019.04.032

    Article  CAS  PubMed  Google Scholar 

  51. J.P. Ring, Radiation risks and dirty bombs. Health Phys. 86(2 Suppl), S42–S47 (2004). https://doi.org/10.1097/00004032-200402001-00013

    Article  CAS  PubMed  Google Scholar 

  52. H. Vogel, Rays as weapons. Eur. J. Radiol. 63(2), 167–177 (2007). https://doi.org/10.1016/j.ejrad.2007.04.028

    Article  CAS  PubMed  Google Scholar 

  53. A. Rump, S. Eder, C. Hermann et al., Estimation of radiation-induced health hazards from a “dirty bomb” attack with radiocesium under different assault and rescue conditions. Mil. Med. Res. 8(1), 65 (2021). https://doi.org/10.1186/s40779-021-00349-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. M. Martellini, A. Malizia, Radiological and nuclear events: challenges, countermeasures and future perspectives, in Cyber and chemical, biological, radiological, nuclear, explosives challenges: threats and counter efforts. (Springer, Cham, 2017), pp.129–155

    Chapter  Google Scholar 

  55. K. Ninyong, E. Wimolmala, N. Sombatsompop et al., Properties of natural rubber (NR) and wood/NR composites as gamma shielding materials. IOP Conf. Ser.: Mater. Sci. Eng. 526(1), 012038 (2019). https://doi.org/10.1088/1757-899x/526/1/012038

    Article  CAS  Google Scholar 

  56. M.E. Mahmoud, A.M. El-Khatib, M.S. Badawi et al., Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites. Radiat. Phys. Chem. 145, 160–173 (2018). https://doi.org/10.1016/j.radphyschem.2017.10.017

    Article  CAS  Google Scholar 

  57. C. Harrison, S. Weaver, C. Bertelsen et al., Polyethylene/boron nitride composites for space radiation shielding. J. Appl. Polym. Sci. 109(4), 2529–2538 (2008). https://doi.org/10.1002/app.27949

    Article  CAS  Google Scholar 

  58. F. Akman, M.R. Kacal, H. Polat et al., A comparative study on the nuclear shielding properties of BiBr3 and PbSO4 incorporated composites. J. Phys. Chem. Solids 152, 109978 (2021). https://doi.org/10.1016/j.jpcs.2021.109978

    Article  CAS  Google Scholar 

  59. M.R. Kaçal, K. Dilsiz, F. Akman et al., Analysis of radiation attenuation properties for polyester/Li2WO4 composites. Radiat. Phys. Chem. 179, 109257 (2021). https://doi.org/10.1016/j.radphyschem.2020.109257

    Article  CAS  Google Scholar 

  60. S.-C. Kim, Preparation and performance evaluation of x-ray-shielding barium sulfate film for medical diagnosis using PET recycling and multi-carrier principles. Coatings 12, 1–11 (2022). https://doi.org/10.3390/coatings12070973

    Article  CAS  Google Scholar 

  61. S.-C. Kim, Tungsten-based hybrid composite shield for medical radioisotope defense. Materials (2022). https://doi.org/10.3390/ma15041338

    Article  PubMed Central  PubMed  Google Scholar 

  62. M.D. Choudhary, I. Akkurt, G. Almisned et al., Radiation-shielding properties of titanium dioxide-added composites. Emerg. Mater. Res. 11(3), 319–324 (2022). https://doi.org/10.1680/jemmr.22.00054

    Article  Google Scholar 

  63. N. Ucar, C. Ekinci, A. Calik et al., Radiation shielding properties of borided Fe–Ni alloys. Int. J. Adv. Res. 6(7), 979–983 (2018). https://doi.org/10.5281/zenodo.1400408

    Article  Google Scholar 

  64. S. Laurenzi, G. De Zanet, M.G. Santonicola, Numerical investigation of radiation shielding properties of polyethylene-based nanocomposite materials in different space environments. Acta Astronaut. 170, 530–538 (2020). https://doi.org/10.1016/j.actaastro.2020.02.027

    Article  CAS  Google Scholar 

  65. E.E. Khozemy, E.F. Salem, A.A. El-Hag, Radiation shielding and enhanced thermal characteristics of high-density polyethylene reinforced with Al (OH)3/Pb2O3 for radioactive waste management. Radiat. Phys. Chem. 193, 109976 (2022). https://doi.org/10.1016/j.radphyschem.2022.109976

    Article  CAS  Google Scholar 

  66. F. Zaccardi, E. Toto, M.G. Santonicola et al., 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronaut. 190, 1–13 (2022). https://doi.org/10.1016/j.actaastro.2021.09.040

    Article  CAS  Google Scholar 

  67. K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and Nano-particles for radiation shielding. Radiat. Phys. Chem. 147, 85–90 (2018). https://doi.org/10.1016/j.radphyschem.2018.02.017

    Article  CAS  Google Scholar 

  68. M.I. Abbas, A.H. Alahmadi, M. Elsafi et al., Effect of kaolin clay and ZnO-nanoparticles on the radiation shielding properties of epoxy resin composites. Polymers (2022). https://doi.org/10.3390/polym14224801

    Article  PubMed Central  PubMed  Google Scholar 

  69. E. Kalkornsurapranee, S. Kothan, S. Intom et al., Wearable and flexible radiation shielding natural rubber composites: effect of different radiation shielding fillers. Radiat. Phys. Chem. 179, 109261 (2021). https://doi.org/10.1016/j.radphyschem.2020.109261

    Article  CAS  Google Scholar 

  70. S.N. Yılmaz, İK. Akbay, T. Özdemir, A metal-ceramic-rubber composite for hybrid gamma and neutron radiation shielding. Radiat. Phys. Chem. 180, 109316 (2021). https://doi.org/10.1016/j.radphyschem.2020.109316

    Article  CAS  Google Scholar 

  71. S. Yonphan, W. Chaiphaksa, E. Kalkornsurapranee et al., Development of flexible radiation shielding materials from natural rubber/Sb2O3 composites. Radiat. Phys. Chem. 200, 110379 (2022). https://doi.org/10.1016/j.radphyschem.2022.110379

    Article  CAS  Google Scholar 

  72. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy 64, 301–310 (2014). https://doi.org/10.1016/j.anucene.2013.10.003

    Article  CAS  Google Scholar 

  73. P. Wang, X. Tang, H. Chai et al., Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material. Fusion Eng. Des. 101, 218–225 (2015). https://doi.org/10.1016/j.fusengdes.2015.09.007

    Article  CAS  Google Scholar 

  74. J. Kim, B.-C. Lee, Y.R. Uhm et al., Enhancement of thermal neutron attenuation of nano-B4C, -BN dispersed neutron shielding polymer nanocomposites. J. Nucl. Mater. 453(1–3), 48–53 (2014). https://doi.org/10.1016/j.jnucmat.2014.06.026

    Article  CAS  Google Scholar 

  75. S. Nambiar, J.T. Yeow, Polymer-composite materials for radiation protection. ACS Appl. Mater. Interfaces 4(11), 5717–5726 (2012). https://doi.org/10.1021/am300783d

    Article  CAS  PubMed  Google Scholar 

  76. G. Hu, W. Sun, Y. Yan et al., Review on the change law of the properties and performance of polymer-matrix nuclear radiation shielding materials under the coupling of nuclear radiation and thermal effects. Front. Energy Res. 9, 777956 (2021). https://doi.org/10.3389/fenrg.2021.777956

    Article  Google Scholar 

  77. V.P. Singh, S.P. Shirmardi, M.E. Medhat et al., Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuum 119, 284–288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006

    Article  CAS  Google Scholar 

  78. Y.L. Thuyavan, N. Anantharaman, G. Arthanareeswaran et al., Preparation and characterization of TiO2-sulfonated polymer embedded polyetherimide membranes for effective desalination application. Desalination 365, 355–364 (2015). https://doi.org/10.1016/j.desal.2015.03.004

    Article  CAS  Google Scholar 

  79. M.R. Ambika, N. Nagaiah, S.K. Suman, Role of bismuth oxide as a reinforcer on gamma shielding ability of unsaturated polyester based polymer composites. J. Appl. Polym. Sci. (2017). https://doi.org/10.1002/app.44657

    Article  Google Scholar 

  80. P. Atashi, S. Rahmani, B. Ahadi et al., Efficient, flexible and lead-free composite based on room temperature vulcanizing silicone rubber/W/Bi2O3 for gamma ray shielding application. J. Mater. Sci.: Mater. Electron. 29(14), 12306–12322 (2018). https://doi.org/10.1007/s10854-018-9344-1

    Article  CAS  Google Scholar 

  81. A.P. Kumar, D. Depan, N. Singh Tomer et al., Nanoscale particles for polymer degradation and stabilization—trends and future perspectives. Prog. Polym. Sci. 34(6), 479–515 (2009). https://doi.org/10.1016/j.progpolymsci.2009.01.002

    Article  CAS  Google Scholar 

  82. N.T. Phong, M.H. Gabr, K. Okubo et al., Enhancement of mechanical properties of carbon fabric/epoxy composites using micro/nano-sized bamboo fibrils. Mater. Des. 47, 624–632 (2013). https://doi.org/10.1016/j.matdes.2012.12.057

    Article  CAS  Google Scholar 

  83. M. Kumar, N. Raju, P.S. Sampath et al., Effects of nanomaterials on polymer composites—an expatiate view. Rev. adv. Mater. Sci. 38(1), 40–54 (2014)

    CAS  Google Scholar 

  84. M.R. Mulenos, J. Liu, H. Lujan et al., Copper, silver, and titania nanoparticles do not release ions under anoxic conditions and release only minute ion levels under oxic conditions in water: evidence for the low toxicity of nanoparticles. Environ. Chem. Lett. 18(4), 1319–1328 (2020). https://doi.org/10.1007/s10311-020-00985-z

    Article  CAS  Google Scholar 

  85. M. Bhattacharya, Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials (2016). https://doi.org/10.3390/ma9040262

    Article  PubMed Central  PubMed  Google Scholar 

  86. H.M. Soylu, F. Yurt Lambrecht, O.A. Ersöz, Gamma radiation shielding efficiency of a new lead-free composite material. J. Radioanal. Nucl. Chem. 305(2), 529–534 (2015). https://doi.org/10.1007/s10967-015-4051-3

    Article  CAS  Google Scholar 

  87. O.A. Ersoz, F.Y. Lambrecht, H.M. Soylu, Tungsten-ethylene vinyl acetate (EVA) composite as a gamma rays shielding material. Indian J. Pure Appl. Phys. 54(12), 793–796 (2016)

    Google Scholar 

  88. Mcmillan J. Radiation shielding composites using thermoplastic polymers mouldable at low temperature. (2019). Doi:https://doi.org/10.48550/arXiv.1908.05197

  89. A.I. Wozniak, V.S. Ivanov, O.A. Zhdanovich et al., Modern approaches to polymer materials protecting from ionizing radiation. Orient. J. Chem. 33(5), 2148–2163 (2017). https://doi.org/10.13005/ojc/330502

    Article  CAS  Google Scholar 

  90. A.A. Zezin, V.I. Fel’dman, A.V. Egorov et al., Effect of the degree of crystallinity on the formation of radical ions in irradiated isotactic polystyrene. Dokl. Chem. 394(4–6), 26–30 (2004). https://doi.org/10.1023/B:DOCH.0000017270.26423.4f

    Article  CAS  Google Scholar 

  91. E. Al-Sarray, İ Akkurt, K. Günoğlu et al., Radiation shielding properties of some composite panel. Acta Phys. Pol. A 132(3), 490–492 (2017). https://doi.org/10.12693/APhysPolA.132.490

    Article  CAS  Google Scholar 

  92. Y. Yıldırım, A. Oral, Structural changes in poly(lactic acid)–zeolite nanocomposites exposed to 60Co gamma rays. Radiat. Eff. Defects Solids 173(5–6), 435–445 (2018). https://doi.org/10.1080/10420150.2018.1462367

    Article  CAS  Google Scholar 

  93. M.V. Muthamma, S.G. Bubbly, S.B. Gudennavar et al., Poly(vinyl alcohol)–bismuth oxide composites for X-ray and γ-ray shielding applications. J. Appl. Polym. Sci. 136(37), 47949 (2019). https://doi.org/10.1002/app.47949

    Article  CAS  Google Scholar 

  94. Y. Wu, Y. Cao, Y. Wu et al., Mechanical properties and gamma-ray shielding performance of 3D-printed poly-ether-ether-ketone/tungsten composites. Materials (2020). https://doi.org/10.3390/ma13204475

    Article  PubMed Central  PubMed  Google Scholar 

  95. R. Mirji, B. Lobo, Study of polycarbonate–bismuth nitrate composite for shielding against gamma radiation. J. Radioanal. Nucl. Chem. 324(1), 7–19 (2020). https://doi.org/10.1007/s10967-020-07038-3

    Article  CAS  Google Scholar 

  96. A. Sharma, M.I. Sayyed, O. Agar et al., Photon-shielding performance of bismuth oxychloride-filled polyester concretes. Mater. Chem. Phys. 241, 122330 (2020). https://doi.org/10.1016/j.matchemphys.2019.122330

    Article  CAS  Google Scholar 

  97. Aurang Z, Azhar H M, Rizwan M, et al. Estimation of gamma radiation shielding parameters for polymer matrix composites using EGS5 Monte Carlo code. (2021). Doi:https://doi.org/10.1117/12.2601162

  98. M.A. Salawu, J.A. Gbolahan, A.B. Alabi, Assessment of radiation shielding properties of polymer-lead (II) oxide composites. J. Nigerian Soc. Phys. Sci. 3(4), 423–428 (2021). https://doi.org/10.46481/jnsps.2021.249

    Article  Google Scholar 

  99. F. Akman, W.S. Abushanab et al., Novel Cu/Zn reinforced polymer composites: experimental characterization for radiation protection efficiency (RPE) and shielding properties for alpha, proton, neutron, and gamma radiations. Polymers (Basel) (2021). https://doi.org/10.3390/polym13183157

    Article  PubMed  Google Scholar 

  100. L.I. Xiao-Ling, W. Rong-Jun, X. Xiao-Hui et al., Study of a high temperature-resistant shielding material for the shielding doors of nuclear power plants. Front. Energy Res. (2021). https://doi.org/10.3389/fenrg.2021.751654

    Article  Google Scholar 

  101. X. Li, M. Yu, X. Xu et al., Optimization design and application study on a high temperature resistant borated polyethylene shielding material. IOP Conf. Ser.: Earth Environ. Sci. 675(1), 012215 (2021). https://doi.org/10.1088/1755-1315/675/1/012215

    Article  Google Scholar 

  102. F.W. Ovalioğlu, İM. Meltem, K. Nurdan et al., Simulation of neutrons shielding properties for some medical materials. Int. J. Comput. Exp. Sci. Eng. 8(1), 5–8 (2023)

    Google Scholar 

  103. X. Liu, Q.P. Zhang, J.L. Li et al., Lead borate@polydopamine core–shell particles chemically bonded with silicone rubber for neutron and γ-rays shielding. J. Appl. Polym. Sci. 139(15), 51914 (2021). https://doi.org/10.1002/app.51914

    Article  CAS  Google Scholar 

  104. A.A. El-Maaref, B.M. Alotaibi, N. Alharbi et al., Effect of Fe2O3 as an aggregate replacement on mechanical, and gamma/neutron radiation shielding properties of phosphoaluminate glasses. J. Inorg. Organomet. Polym. Mater. 32(8), 3117–3127 (2022). https://doi.org/10.1007/s10904-022-02345-6

    Article  CAS  Google Scholar 

  105. I. Akkurt, R.B. Malidarre, I. Kartal et al., Monte Carlo simulations study on gamma ray-neutron shielding characteristics for vinyl ester composites. Polym. Compos. 42(9), 4764–4774 (2021). https://doi.org/10.1002/pc.26185

    Article  CAS  Google Scholar 

  106. S. Thakur, P. Kaur, L. Singh, Investigation of polymethyl methacrylate incorporated neodymium oxide for gamma-ray and neutron shielding behaviour. AIP Conf. Proc. (2019). https://doi.org/10.1063/1.5122503

    Article  Google Scholar 

  107. S. Thakur, P. Kaur, Comparative analysis of neutron, proton, alpha and beta radiation shielding parameters of PES and PVDC. J. Phys.: Conf. Ser. 1531(1), 012003 (2020). https://doi.org/10.1088/1742-6596/1531/1/012003

    Article  CAS  Google Scholar 

  108. H. Akhdar, Theoretical investigation of gamma- and neutron-shielding properties of polysulfone (PSU) polymer material using geant4. Polymers (Basel) (2022). https://doi.org/10.3390/polym14163374

    Article  PubMed  Google Scholar 

  109. Y. Wu, Y. Cao, Y. Wu et al., Neutron shielding performance of 3D-printed boron carbide PEEK composites. Materials (2020). https://doi.org/10.3390/ma13102314

    Article  PubMed Central  PubMed  Google Scholar 

  110. T. Tuna, A.A. Eker, E. Kam, Neutron shielding characteristics of polymer composites with boron carbide. J. Korean Phys. Soc. 78(7), 566–573 (2021). https://doi.org/10.1007/s40042-021-00089-z

    Article  CAS  Google Scholar 

  111. H. Xu, D. Liu, W.Q. Sun et al., Study on the design, preparation, and performance evaluation of heat-resistant interlayer-polyimide-resin-based neutron-shielding materials. Materials (Basel) 15(9), 2978 (2022). https://doi.org/10.3390/ma15092978

    Article  CAS  PubMed  Google Scholar 

  112. S.T. Abdulrahman, B. Patanair, V.P. Vasukuttan et al., High-density polyethylene/EPDM rubber blend composites of boron compounds for neutron shielding application. Express Polym. Lett. 16(6), 558–572 (2022). https://doi.org/10.3144/expresspolymlett.2022.42

    Article  CAS  Google Scholar 

  113. S.M. Malkapur, S.S. Ghodke, P.N. Sujatha et al., Waste-polymer incorporated concrete mixes for neutron and gamma radiation shielding. Progress Nucl. Energy 135, 103694 (2021). https://doi.org/10.1016/j.pnucene.2021.103694

    Article  CAS  Google Scholar 

  114. A. Saeed, A. Alaqab, E. Banoqitah et al., Graphitic carbon-rich oil fly ash as effective reinforcements to enhance the mechanical, thermal, and radiation shielding properties of high-grade epoxy polymer. Polym. Test. 115, 107739 (2022). https://doi.org/10.1016/j.polymertesting.2022.107739

    Article  CAS  Google Scholar 

  115. Akyildirim R B M, İskender A, Kadir G, et al. Fast neutrons shielding properties for HAP-Fe2O3 composite materials. 7. (2023). https://dergipark.org.tr/en/pub/ijcesen/issue/64354/1012039

  116. A. Lee, J. Cha, D. Lim et al., A study on the radiation shielding and absorption effects of nonwoven composites by monte-carlo simulation analysis. Appl. Sci. (2022). https://doi.org/10.3390/app12073570

    Article  PubMed  Google Scholar 

  117. W.T.Y. Tze, D.J. Gardner, C.P. Tripp et al., Cellulose fiber/polymer adhesion: effects of fiber/matrix interfacial chemistry on the micromechanics of the interphase. J. Adhes. Sci. Technol. 20(15), 1649–1668 (2006). https://doi.org/10.1163/156856106779024427

    Article  CAS  Google Scholar 

  118. G. Alva, Y. Lin, G. Fang, Thermal and electrical characterization of polymer/ceramic composites with polyvinyl butyral matrix. Mater. Chem. Phys. 205, 401–415 (2018). https://doi.org/10.1016/j.matchemphys.2017.11.046

    Article  CAS  Google Scholar 

  119. Y. Sui, Y. Cui, X. Meng et al., Research progress on the correlation between properties of nanoparticles and their dispersion states in polymer matrix. J. Appl. Polym. Sci. 139(19), 52096 (2022). https://doi.org/10.1002/app.52096

    Article  CAS  Google Scholar 

  120. S. Prabhu, S.G. Bubbly, S.B. Gudennavar, X-Ray and γ-ray shielding efficiency of polymer composites: choice of fillers, effect of loading and filler size, photon energy multifunctionality. Polym. Rev. 63(1), 246–288 (2023). https://doi.org/10.1080/15583724.2022.2067867

    Article  CAS  Google Scholar 

  121. A. Zegaoui, M. Derradji, A. Medjahed et al., Multifunctional polymer materials with enhanced mechanical, thermal and gamma radiation shielding properties from dicyanate ester of bisphenol-A/bisphenol-A based benzoxazine resin and short kevlar/basalt hybrid fibers. J. Polym. Res. 25(12), 250 (2018). https://doi.org/10.1007/s10965-018-1652-x

    Article  CAS  Google Scholar 

  122. S. Prabhu, S.G. Bubbly, S.B. Gudennavar, Thermal, mechanical and γ-ray shielding properties of micro- and nano-Ta2O5 loaded DGEBA epoxy resin composites. J. Appl. Polym. Sci. 138(44), 51289 (2021). https://doi.org/10.1002/app.51289

    Article  CAS  Google Scholar 

  123. A.H. Abdalsalam, M.I. Sayyed, T.A. Hussein et al., A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 523, 92–98 (2019). https://doi.org/10.1016/j.chemphys.2019.04.013

    Article  CAS  Google Scholar 

  124. A.H. Abdalsalam, E. Sakar, K.M. Kaky et al., Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. (2020). https://doi.org/10.1016/j.radphyschem.2019.108537

    Article  Google Scholar 

  125. J. Kim, D. Seo, B.C. Lee et al., Nano-W dispersed gamma radiation shielding materials. Adv. Eng. Mater. 16(9), 1083–1089 (2014). https://doi.org/10.1002/adem.201400127

    Article  CAS  Google Scholar 

  126. Y. Dong et al., Effects of WO3 particle size in WO3/epoxy resin radiation shielding material. Chin. Phys. Lett. 29(10), 108102 (2012). https://doi.org/10.1088/0256-307X/29/10/108102

    Article  CAS  Google Scholar 

  127. F. Kazemi, S. Malekie, M.A. Hosseini, A monte carlo study on the shielding properties of a novel polyvinyl alcohol (PVA)/WO3 composite, against gamma rays, using the MCNPX code. J. Biomed. Phys. Eng. 9(4), 465–472 (2019). https://doi.org/10.31661/jbpe.v0i0.1114

    Article  Google Scholar 

  128. M. Afshar, J. Morshedian, S. Ahmadi, Radiation attenuation capability and flow characteristics of HDPE composite loaded with W, MoS2, and B4C. Polym. Compos. 40(1), 149–158 (2019). https://doi.org/10.1002/pc.24620

    Article  CAS  Google Scholar 

  129. A. Aghaz, R. Faghihi, S.M.J. Mortazavi et al., Radiation attenuation properties of shields containing micro and Nano WO3 in diagnostic X-ray energy range. Int. J. Radiat. Res. 14(2), 127–131 (2016). https://doi.org/10.18869/acadpub.ijrr.14.2.127

    Article  Google Scholar 

  130. A. Bedar, R.K. Lenka, N. Goswami et al., Polysulfone-ceria mixed-matrix membrane with enhanced radiation resistance behavior. ACS Appl. Polym. Mater. 1(7), 1854–1865 (2019). https://doi.org/10.1021/acsapm.9b00389

    Article  CAS  Google Scholar 

  131. M.E. Mahmoud, A.M. El-Khatib, R.M. El-Sharkawy et al., Design and testing of high-density polyethylene nanocomposites filled with lead oxide micro- and nano-particles: mechanical, thermal, and morphological properties. J. Appl. Polym. Sci. 136(31), 47812 (2019). https://doi.org/10.1002/app.47812

    Article  CAS  Google Scholar 

  132. M.E. Mahmoud et al., Fabrication and characterization of phosphotungstic acid—copper oxide nanoparticles—plastic waste nanocomposites for enhanced radiation-shielding. J. Alloys Compd. 803, 768–777 (2019). https://doi.org/10.1016/j.jallcom.2019.06.290

    Article  CAS  Google Scholar 

  133. M.E. Mahmoud, M.A. Khalifa, R.M. El-Sharkawy et al., Effects of Al2O3 and BaO nano-additives on mechanical characteristics of high-density polyethylene. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124251

    Article  Google Scholar 

  134. H.M.H. Zakaly, A. Ashry, A. El-Taher et al., Role of novel ternary nanocomposites polypropylene in nuclear radiation attenuation properties: in-depth simulation study. Radiat. Phys. Chem. (2021). https://doi.org/10.1016/j.radphyschem.2021.109667

    Article  Google Scholar 

  135. R.M. El-Sharkawy, E.A. Allam, A. El-Taher et al., Synergistic effects on gamma-ray shielding by novel light-weight nanocomposite materials of bentonite containing nano Bi2O3 additive. Ceram. Int. 48(5), 7291–7303 (2022). https://doi.org/10.1016/j.ceramint.2021.11.290

    Article  CAS  Google Scholar 

  136. E.-S.A. Waly, O.A. Ghazy, M. Khalil et al., Gamma radiation shielding performance and physico-chemical properties of poly (vinyl alcohol)/Cd(NO3)2 composite films. Radiochim. Acta 110(4), 279–290 (2022). https://doi.org/10.1515/ract-2021-1062

    Article  CAS  Google Scholar 

  137. A. Galehdari, V. Mani, A.D. Kelkar, Fabrication of nanoengineered radiation shielding multifunctional polymeric sandwich composites. Int. Sch. Sci. Res. Innov. 10(3), 301–304 (2016)

    Google Scholar 

  138. N.A. Galehdari, A.D. Kelkar, Characterization of nanoparticle enhanced multifunctional sandwich composites subjected to space radiation. ASME Int. Mech. Eng. Congress Expos. (2016). https://doi.org/10.1115/imece2016-66774

    Article  Google Scholar 

  139. N. Abuali Galehdari, A.D. Kelkar, Effect of neutron radiation on the mechanical and thermophysical properties of nanoengineered polymer composites. J. Mater. Res. 32(2), 426–434 (2017). https://doi.org/10.1557/jmr.2016.494

    Article  CAS  Google Scholar 

  140. Galehdari N A. Fabrication, characterization and modeling of radiation shielding sandwich structures. (2018). https://scholar.google.com/scholar?q=Fabrication

  141. Y.-C. Xu, C. Song, X.-Y. Ding et al., Tailoring lattices of Bi2WO6 crystals via Ce doping to improve the shielding properties against low-energy gamma rays. J. Phys. Chem. Solids 127, 76–80 (2019). https://doi.org/10.1016/j.jpcs.2018.12.007

    Article  CAS  Google Scholar 

  142. O.M. Hemeda, M.E.A. Eid, T. Sharshar et al., Synthesis of nanometer-sized PbZrxTi1–xO3 for gamma-ray attenuation. J. Phys. Chem. Solids 148, 109688 (2021). https://doi.org/10.1016/j.jpcs.2020.109688

    Article  CAS  Google Scholar 

  143. D. Zhou, Q.-P. Zhang, J. Zheng et al., Co-shielding of neutron and γ-ray with bismuth borate nanoparticles fabricated via a facile sol–gel method. Inorg. Chem. Commun. 77, 55–58 (2017). https://doi.org/10.1016/j.inoche.2017.01.034

    Article  CAS  Google Scholar 

  144. E.A. Allam, R.M. El-Sharkawy, A. El-Taher et al., Enhancement and optimization of gamma radiation shielding by doped nano HgO into nanoscale bentonite. Nucl. Eng. Technol. 54(6), 2253–2261 (2022). https://doi.org/10.1016/j.net.2021.12.026

    Article  CAS  Google Scholar 

  145. S. Prabhu, S.G. Bubbly, S.B. Gudennavar, Nanoparticles as fillers in composites for x-ray and gamma-ray shielding: a review. Diver. Appl. New Age Nanopart. (2023). https://doi.org/10.4018/978-1-6684-7358-0.ch010

    Article  Google Scholar 

  146. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya et al., Synthesis and characterization of multi functional nickel ferrite nano-particles for X-ray/gamma radiation shielding, display and antimicrobial applications. J. Phys. Chem. Solids 159, 110260 (2021). https://doi.org/10.1016/j.jpcs.2021.110260

    Article  CAS  Google Scholar 

  147. R.M. Lokhande, V. Vinayak, S.V. Mukhamale et al., Gamma radiation shielding characteristics of various spinel ferrite nanocrystals: a combined experimental and theoretical investigation. RSC Adv. 11(14), 7925–7937 (2021). https://doi.org/10.1039/D0RA08372K

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  148. H. Zakaly, D. Abulyazied, S. Issa et al., Optical, microhardness, and radiation shielding properties of rare earth doped strontium barium titanate polyvinylidene fluoride nanocomposites. J. Inorg. Organomet. Polym Mater. (2023). https://doi.org/10.1007/s10904-023-02564-5

    Article  Google Scholar 

  149. A. Bijanu, R. Arya, V. Agrawal et al., Metal-polymer composites for radiation protection: a review. J. Polym. Res. 28(10), 392 (2021). https://doi.org/10.1007/s10965-021-02751-3

    Article  CAS  Google Scholar 

  150. I. Akkurt, Effective atomic and electron numbers of some steels at different energies. Ann. Nucl. Energy 36(11), 1702–1705 (2009). https://doi.org/10.1016/j.anucene.2009.09.005

    Article  CAS  Google Scholar 

  151. N.Z.N. Azman, S.A. Siddiqui, R. Hart et al., Microstructural design of lead oxide-epoxy composites for radiation shielding purposes. J. Appl. Polym. Sci. 128(5), 3213–3219 (2013). https://doi.org/10.1002/app.38515

    Article  CAS  Google Scholar 

  152. M.V. Muthamma, B.S. Gudennavar, S.B. Gudennavar, Attenuation parameters of polyvinyl alcohol-tungsten oxide composites at the photon energies 5.895, 6.490, 59.54 and 662 keV. Pol. J. Med. Phys. Eng. 26(2), 77–85 (2020). https://doi.org/10.2478/pjmpe-2020-0009

    Article  Google Scholar 

  153. M.V. Muthamma, S.G. Bubbly, S.B. Gudennavar, Attenuation properties of epoxy-Ta2O5 and epoxy-Ta2O5-Bi2O3 composites at γ-ray energies 59.54 and 662 keV. J. Appl. Polym. Sci. 137(44), 49366 (2020). https://doi.org/10.1002/app.49366

    Article  CAS  Google Scholar 

  154. Y. Wen, R. Song, M. Si, Monte-carlo simulation to compare the absorption capacity of different substances for X-ray. Int. J. Sci. 9(05), 14–16 (2020). https://doi.org/10.18483/ijSci.2329

    Article  Google Scholar 

  155. E. Eren Belgin, G.A. Aycik, Preparation and radiation attenuation performances of metal oxide filled polyethylene based composites for ionizing electromagnetic radiation shielding applications. J. Radioanal. Nucl. Chem. 306(1), 107–117 (2015). https://doi.org/10.1007/s10967-015-4052-2

    Article  CAS  Google Scholar 

  156. S. Verma, S.S. Amritphale, S.K. Sanghi et al., Development of functional material for simultaneous shielding x-ray and EMI radiations using inorganic-organic hybrid gel. J. Inorg. Organomet. Polym Mater. 27(3), 728–738 (2017). https://doi.org/10.1007/s10904-017-0517-9

    Article  CAS  Google Scholar 

  157. N.C. Das, D. Khastgir, T.K. Chaki et al., Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites. Compos. A Appl. Sci. Manuf. 31(10), 1069–1081 (2000). https://doi.org/10.1016/S1359-835X(00)00064-6

    Article  Google Scholar 

  158. N.C. Das, T.K. Chaki, D. Khastgir, Carbon fiber-filled conductive composites based on EVA. EPDM Blends 22(2), 115–136 (2002). https://doi.org/10.1515/POLYENG.2002.22.2.115

    Article  CAS  Google Scholar 

  159. R. Ravindren, S. Mondal, P. Bhawal et al., Superior electromagnetic interference shielding effectiveness and low percolation threshold through the preferential distribution of carbon black in the highly flexible polymer blend composites. Polym. Compos. 40(4), 1404–1418 (2019). https://doi.org/10.1002/pc.24874

    Article  CAS  Google Scholar 

  160. K. Nath, S.K. Ghosh, A. Katheria et al., Design of interconnected 1D nanomaterials with selective localization in biodegradable binary thermoplastic nanocomposite films for effective electromagnetic interference shielding effectiveness. Polym. Adv. Technol. 34(3), 1019–1034 (2023). https://doi.org/10.1002/pat.5949

    Article  CAS  Google Scholar 

  161. E. Eren Belgin, G.A. Aycik, A. Kalemtas et al., Usability of natural titanium-iron oxide as filler material for ionizing electromagnetic radiation shielding composites; preparation, characterization and performance. J. Radioanal. Nucl. Chem. (2015). https://doi.org/10.1007/s10967-015-4643-y

    Article  Google Scholar 

  162. E.E. Belgin, G.A. Aycik, Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation. J. Radioanal. Nucl. Chem. 311(3), 1953–1961 (2017). https://doi.org/10.1007/s10967-016-5156-z

    Article  CAS  Google Scholar 

  163. E.E. Belgin, G.A. Aycik, Preparation, characterization and comparative ionizing electromagnetic radiation performances: part I—metal oxide reinforced polymeric composites. J. Radioanal. Nucl. Chem. 325(2), 503–513 (2020). https://doi.org/10.1007/s10967-020-07245-y

    Article  CAS  Google Scholar 

  164. Ö. Can, E. Eren Belgin, G.A. Aycik, Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester. Nucl. Eng. Technol. 53(5), 1642–1651 (2021). https://doi.org/10.1016/j.net.2020.11.006

    Article  CAS  Google Scholar 

  165. B.E. Eren, Comparison of gamma spectrometric method and XCOM method in calculating mass attenuation coefficients of reinforced polymeric composite materials. Radiat. Phys. Chem. 193, 109960 (2022). https://doi.org/10.1016/j.radphyschem.2022.109960

    Article  CAS  Google Scholar 

  166. F. Akman, I.H. Geçibesler, I. Demirkol et al., Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can. J. Phys. 97(1), 86–92 (2019). https://doi.org/10.1139/cjp-2017-0923

    Article  CAS  Google Scholar 

  167. M.F. Turhan, R. Durak, F. Akman et al., Determination of some selected absorption parameters for Cd, La and Ce elements. Radiat. Phys. Chem. 156, 101–108 (2019). https://doi.org/10.1016/j.radphyschem.2018.10.025

    Article  CAS  Google Scholar 

  168. E. Casnati, A. Tartari, C. Baraldi, An empirical approach to K-shell ionisation cross section by electrons. J. Phys. B: At. Mol. Phys. 15(1), 155 (1982). https://doi.org/10.1088/0022-3700/15/1/022

    Article  CAS  Google Scholar 

  169. F. Akman, M.R. Kaçal, M.I. Sayyed et al., Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloy. Compd. 782, 315–322 (2019). https://doi.org/10.1016/j.jallcom.2018.12.221

    Article  CAS  Google Scholar 

  170. F. Akman, Z.Y. Khattari, M.R. Kaçal et al., The radiation shielding features for some silicide, boride and oxide types ceramics. Radiat. Phys. Chem. 160, 9–14 (2019). https://doi.org/10.1016/j.radphyschem.2019.03.001

    Article  CAS  Google Scholar 

  171. F. Akman, V. Turan, M.I. Sayyed et al., Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94–88.04 keV using WinXCom and FFAST programs. Results Phys. 15, 102751 (2019). https://doi.org/10.1016/j.rinp.2019.102751

    Article  Google Scholar 

  172. F. Akman, M.R. Kaçal, N. Almousa et al., Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Progress Nucl. Energy (2020). https://doi.org/10.1016/j.pnucene.2020.103257

    Article  Google Scholar 

  173. F. Akman, I. Ozkan, M.R. Kacal et al., Shielding features, to non-ionizing and ionizing photons, of FeCr-based composites. Appl. Radiat. Isot. 167, 109470 (2021). https://doi.org/10.1016/j.apradiso.2020.109470

    Article  CAS  PubMed  Google Scholar 

  174. F. Akman, H. Ogul, M.R. Kaçal et al., Impact of lead(II) iodide on radiation shielding properties of polyester composites. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-03494-6

    Article  Google Scholar 

  175. F. Akman, M.R. Kaçal, H. Polat et al., A comparative study on the nuclear shielding properties of BiBr3 and PbSO4 incorporated composites. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.109978

    Article  Google Scholar 

  176. H.A. Aljawhara, M.I. Sayyed, M.I. Sayyed et al., Optical, mechanical properties and gamma ray shielding behavior of TeO2-Bi2O3-PbO-MgO-B2O3 glasses using FLUKA simulation code. Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.110900

    Article  Google Scholar 

  177. R. Boodaghi Malidarre, I. Akkurt, Monte Carlo simulation study on TeO2–Bi2O–PbO–MgO–B2O3 glass for neutron-gamma 252Cf source. J. Mater. Sci.: Mater. Electron. 32(9), 11666–11682 (2021). https://doi.org/10.1007/s10854-021-05776-y

    Article  CAS  Google Scholar 

  178. D.ŞB. Mutlu, T. Huseyin Ozan, R.B. Çakirli, An investigation on radiation shielding properties of borosilicate glass systems. Int. J. Comput. Exp. Sci. Eng. 7(2), 99–108 (2023)

    Google Scholar 

  179. Y.S. Rammah, F.I. El-Agawany, A. Gamal et al., Responsibility of Bi2O3 content in photon, alpha, proton, fast and thermal neutron shielding capacity and elastic moduli of ZnO/B2O3/Bi2O3 glasses. J. Inorg. Organomet. Polym. Mater. 31(8), 3505–3524 (2021). https://doi.org/10.1007/s10904-021-01976-5

    Article  CAS  Google Scholar 

  180. F. Akman, H. Ogul, M.R. Kaçal et al., Gamma attenuation characteristics of CdTe-doped polyester composites. Progress Nucl. Energy (2021). https://doi.org/10.1016/j.pnucene.2020.103608

    Article  Google Scholar 

  181. F. Özkalaycı, M.R. Kaçal, H. Polat et al., Lead-free Sb-based polymer composite for γ-ray shielding purposes. Radiochim. Acta 110(5), 393–402 (2022). https://doi.org/10.1515/ract-2022-0020

    Article  CAS  Google Scholar 

  182. F. Akman, H. Ogul, I. Ozkan et al., Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nucl. Eng. Technol. 54(1), 283–292 (2022). https://doi.org/10.1016/j.net.2021.07.006

    Article  CAS  Google Scholar 

  183. H.C. Manjunatha, K.V. Sathish, L. Seenappa et al., A study of X-ray, gamma and neutron shielding parameters in Si-alloys. Radiat. Phys. Chem. 165, 108414 (2019). https://doi.org/10.1016/j.radphyschem.2019.108414

    Article  CAS  Google Scholar 

  184. K.V. Sathish, H.C. Manjunatha, Y.S. Vidya et al., Investigation on shielding properties of lead based alloys. Progress Nucl. Energy 137, 103788 (2021). https://doi.org/10.1016/j.pnucene.2021.103788

    Article  CAS  Google Scholar 

  185. Q. Akkurt, W. Faez, G. Kadir et al., Experimental testing of the radiation shielding properties for steel. Int. J. Comput. Exp. Sci. Eng. 8(3), 74–76 (2023)

    Google Scholar 

  186. A. Iskender, Effective atomic numbers for Fe–Mn alloy using transmission experiment. Chin. Phys. Lett. 24(10), 2812 (2007). https://doi.org/10.1088/0256-307X/24/10/027

    Article  Google Scholar 

  187. K.V. Sathish, H.C. Manjunatha, L. Seenappa et al., Gamma, x-ray and neutron shielding properties of iron boron alloys. Mater. Today: Proc. 49, 613–619 (2022). https://doi.org/10.1016/j.matpr.2021.04.516

    Article  CAS  Google Scholar 

  188. B.C. Reddy, H.C. Manjunatha, Y.S. Vidya et al., X-ray/gamma ray radiation shielding properties of α-Bi2O3 synthesized by low temperature solution combustion method. Nucl. Eng. Technol. 54(3), 1062–1070 (2022). https://doi.org/10.1016/j.net.2021.09.023

    Article  CAS  Google Scholar 

  189. K.V. Sathish, H.C. Manjunatha, Y.S. Vidya et al., Gamma, X-ray, and neutron shielding properties of silicon–germanium alloys. Can. J. Phys. 100(12), 543–549 (2022). https://doi.org/10.1139/cjp-2021-0080

    Article  CAS  Google Scholar 

  190. K.V. Sathish, H.C. Manjunatha, Y.S. Vidya et al., X-rays/gamma rays radiation shielding properties of barium–nickel–iron oxide nanocomposite synthesized via low temperature solution combustion method. Radiat. Phys. Chem. 194, 110053 (2022). https://doi.org/10.1016/j.radphyschem.2022.110053

    Article  CAS  Google Scholar 

  191. U.C. Okonkwo, C.I. Idumah, C.E. Okafor et al., Development, characterization, and properties of polymeric nanoarchitectures for radiation attenuation. J. Inorg. Organomet. Polym. Mater. 32(11), 4093–4113 (2022). https://doi.org/10.1007/s10904-022-02420-y

    Article  CAS  Google Scholar 

  192. M. Harjinder Singh, G.S. Brar, S.M. Gurmel, Gamma-ray shielding effectiveness of novel light-weight clay-flyash bricks. Radiat. Phys. Chem. (2016). https://doi.org/10.1016/j.radphyschem.2016.06.013

    Article  Google Scholar 

  193. M. Dong, X. Xue, A. Kumar et al., A novel method of utilization of hot dip galvanizing slag using the heat waste from itself for protection from radiation. J. Hazard. Mater. 344, 602–614 (2018). https://doi.org/10.1016/j.jhazmat.2017.10.066

    Article  CAS  PubMed  Google Scholar 

  194. B. Wang, C.Y. Ting, C.S. Lai et al., Bismuth pelvic x-ray shielding reduces radiation dose exposure in pediatric radiography. Biomed. Res. Int. 2021, 9985714 (2021). https://doi.org/10.1155/2021/9985714

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  195. S.-C. Kim, Improving the x-ray shielding performance of tungsten thin-film plates manufactured using the rolling technology. Appl. Sci. 11(19), 9111 (2021). https://doi.org/10.3390/app11199111

    Article  CAS  Google Scholar 

  196. V. Parvathi, S.G. Bubbly, S.B. Gudennavar, Photon, electron, proton and alpha particle interaction parameters of different clays. AIP Conf. Proc. 2446(1), 100019 (2022). https://doi.org/10.1063/5.0108294

    Article  CAS  Google Scholar 

  197. S.-C. Kim, Process technology for development and performance improvement of medical radiation shield made of eco-friendly oyster shell powder. Appl. Sci. (2022). https://doi.org/10.3390/app12030968

    Article  Google Scholar 

  198. V. Agrawal, R. Paulose, R. Arya et al., Green conversion of hazardous red mud into diagnostic X-ray shielding tiles. J. Hazard. Mater. 424(Pt B), 127507 (2022). https://doi.org/10.1016/j.jhazmat.2021.127507

    Article  CAS  PubMed  Google Scholar 

  199. S. Prabhu, D.Y. Bharadwaj, S.G. Bubbly et al., Lead-free inorganic metal perovskites beyond photovoltaics: photon, charged particles and neutron shielding applications. Nucl. Eng. Technol. 55(3), 1061–1070 (2023). https://doi.org/10.1016/j.net.2022.11.025

    Article  CAS  Google Scholar 

  200. F. Hao, W. Zhou, Y. Gao, Recent advances in nuclear radiation protective clothing materials. Mater. Express 11(8), 1255–1268 (2021). https://doi.org/10.1166/mex.2021.1922

    Article  CAS  Google Scholar 

  201. H. Gülbiçim, M.N. Türkan, M. Aksu et al., A study on the investigation of gamma shielding properties of some metal borides. Prog. Nucl. Energy 115, 107–114 (2019). https://doi.org/10.1016/j.pnucene.2019.03.022

    Article  CAS  Google Scholar 

  202. M. Kozlovska, R. Cerny, P. Otahal, Attenuation of X and gamma rays in personal radiation shielding protective clothing. Health Phys. 109(3 Suppl 3), S205–S211 (2015). https://doi.org/10.1097/HP.0000000000000361

    Article  CAS  PubMed  Google Scholar 

  203. Q. Li, Q. Wei, W. Zheng et al., Enhanced radiation shielding with conformal light-weight nanoparticle-polymer composite. ACS Appl. Mater. Interfaces 10(41), 35510–35515 (2018). https://doi.org/10.1021/acsami.8b10600

    Article  CAS  PubMed  Google Scholar 

  204. Z. Soltani, A. Beigzadeh, F. Ziaie et al., Effect of particle size and percentages of boron carbide on the thermal neutron radiation shielding properties of HDPE/B4C composite: Experimental and simulation studies. Radiat. Phys. Chem. 127, 182–187 (2016). https://doi.org/10.1016/j.radphyschem.2016.06.027

    Article  CAS  Google Scholar 

  205. Y. Wu, X. Kou, J. Huang, Fabrication and magnetic properties of electrospun Fe2NiGa nanofibers. Mater. Express 8(4), 375–380 (2018). https://doi.org/10.1166/mex.2018.1440

    Article  CAS  Google Scholar 

  206. B.-M. Wang, Y. Zhang, Synthesis and properties of carbon nanofibers filled cement-based composites combined with new surfactant methylcellulose. Mater. Express 4(2), 177–182 (2014). https://doi.org/10.1166/mex.2014.1157

    Article  CAS  Google Scholar 

  207. Z. Liu, Y. Wan, G. Xiong et al., Three-dimensional porous nanocomposite of highly dispersed Fe3O4 nanoparticles on carbon nanofibers for high-performance microwave absorbents. Mater. Express 5(2), 113–120 (2015). https://doi.org/10.1166/mex.2015.1216

    Article  CAS  Google Scholar 

  208. W. Zhang, H. Xiong, S. Wang et al., Gamma-ray shielding performance of carbon nanotube film material. Mater. Express 6(5), 456–460 (2016). https://doi.org/10.1166/mex.2016.1326

    Article  CAS  Google Scholar 

  209. J. Yang, X. Zhang, C. Liu et al., Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites. Nucl. Instrum. Methods Phys. Res. Sect. B 409, 2–8 (2017). https://doi.org/10.1016/j.nimb.2017.04.046

    Article  CAS  Google Scholar 

  210. M. Dias, N. Catarino, D. Nunes et al., Helium and deuterium irradiation effects in W-Ta composites produced by pulse plasma compaction. J. Nucl. Mater. 492, 105–112 (2017). https://doi.org/10.1016/j.jnucmat.2017.05.007

    Article  CAS  Google Scholar 

  211. B. Körpınar, B. Canbaz Öztürk, N.F. Çam et al., Radiation shielding properties of poly(hydroxylethyl methacrylate)/tungsten(VI) oxide composites. Mater. Chem. Phys. 239, 121986 (2020). https://doi.org/10.1016/j.matchemphys.2019.121986

    Article  CAS  Google Scholar 

  212. E. Schmid, W. Panzer, H. Schlattl et al., Emission of fluorescent x-radiation from non-lead based shielding materials of protective clothing: a radiobiological problem? J. Radiol. Prot. 32(3), N129–N139 (2012). https://doi.org/10.1088/0952-4746/32/3/N129

    Article  CAS  PubMed  Google Scholar 

  213. D. Adlienė, L. Gilys, E. Griškonis, Development and characterization of new tungsten and tantalum containing composites for radiation shielding in medicine. Nucl. Instrum. Methods Phys. Res. Sect. B 467, 21–26 (2020). https://doi.org/10.1016/j.nimb.2020.01.027

    Article  CAS  Google Scholar 

  214. B. Sheng, S.Q. Chang, B. Kang et al., Optimal design and preparation of novel radiation shielding materials used for low energy γ/X-ray. Adv. Mater. Res. 900, 209–212 (2014). https://doi.org/10.4028/www.scientific.net/AMR.900.209

    Article  CAS  Google Scholar 

  215. A. Alshahrie, N. Salah, Z.H. Khan, Effect of γ-irradiation on electrical transport properties of ZnTe thin films composed of nanostructures. Mater. Express 7(3), 189–198 (2017). https://doi.org/10.1166/mex.2017.1365

    Article  CAS  Google Scholar 

  216. S.M. Metwally, O. Saber, S.S. Ibrahim et al., Synthesis and characterization of copper hydroxynitrate salt (Cu2(OH)3NO3): effect of gamma radiation absorbed doses on thermal stability. Mater. Express 9(6), 545–552 (2019). https://doi.org/10.1166/mex.2019.1553

    Article  CAS  Google Scholar 

  217. F. Akarslan, I.S. Üncü, S. Kılıncarslan et al., Radiation shielding properties of barite coated fabric by computer programme. AIP Conf. Proc. 1653(1), 020007 (2015). https://doi.org/10.1063/1.4914198

    Article  Google Scholar 

  218. İ Akkurt, S. Emikönel, F. Akarslan et al., Barite effect on radiation shielding properties of cotton-polyester fabric. Acta Phys. Pol. A. (2015). https://doi.org/10.12693/APhysPolA.128.B-53

    Article  Google Scholar 

  219. Kilincarslan S, Kilincarslan S, Akkurt I, et al. Determination of radiation shielding properties of cotton polyester blend fabric coated with dierent. (2016). https://www.semanticscholar.org/paper/ca68b4d64576c03d66ee27f781d02984697aeaaa

  220. Ş Kilinçarslan, İS. Üncü, İ Akkurt et al., Determination of radiation shielding properties of fabrics using image processing method. Acta Phys. Pol. A (2017). https://doi.org/10.12693/APhysPolA.132.1171

    Article  Google Scholar 

  221. D. Adliene, E. Griskonis, N. Vaiciunaite et al., Evaluation of new transparent tungsten containing nanocomposites for radiation protection screens. Radiat. Prot. Dosimetry. 165(1–4), 406–409 (2015). https://doi.org/10.1093/rpd/ncv072

    Article  CAS  PubMed  Google Scholar 

  222. R.B.M. Akyildirim, O.T. Huseyin, G. Kadir et al., Assessment of gamma ray shielding properties for skin. Int. J. Comput. Exp. Sci. Eng. 9(1), 6–10 (2023)

    Article  Google Scholar 

  223. S.-C. Kim, Construction of a medical radiation-shielding environment by analyzing the weaving characteristics and shielding performance of shielding fibers using x-ray-impermeable materials. Appl. Sci. (2021). https://doi.org/10.3390/app11041705

    Article  PubMed  Google Scholar 

  224. S.-C. Kim, Development of a lightweight tungsten shielding fiber that can be used for improving the performance of medical radiation shields. Appl. Sci. (2021). https://doi.org/10.3390/app11146475

    Article  PubMed  Google Scholar 

  225. S.C. Kim, Development of air pressure mirroring particle dispersion method for producing high-density tungsten medical radiation shielding film. Sci. Rep. 11(1), 485 (2021). https://doi.org/10.1038/s41598-020-79819-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  226. S.-C. Kim, Research on performance improvement measures for medical radiation shielding film through removal of air bubbles and pinholes. Radiat. Eff. Defects Solids 176(7–8), 718–730 (2021). https://doi.org/10.1080/10420150.2021.1935944

    Article  CAS  Google Scholar 

  227. S.C. Kim, J.S. Son, Double-layered fiber for lightweight flexible clothing providing shielding from low-dose natural radiation. Sci. Rep. 11(1), 3676 (2021). https://doi.org/10.1038/s41598-021-83272-3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  228. L. Gilys, E. Griškonis, P. Griškevičius et al., Lead free multilayered polymer composites for radiation shielding. Polymers (2022). https://doi.org/10.3390/polym14091696

    Article  PubMed Central  PubMed  Google Scholar 

  229. S. Prabhu, Sodium alginate/bismuth (III) oxide composites for γ-ray shielding applications. J. Appl. Polym. Sci. 138(19), 50369 (2021). https://doi.org/10.1002/app.50369

    Article  CAS  Google Scholar 

  230. S. Kaewpirom, K. Chousangsuntorn, S. Boonsang, Evaluation of micro- and nano-bismuth(III) oxide coated fabric for environmentally friendly x-ray shielding materials. ACS Omega 7(32), 28248–28257 (2022). https://doi.org/10.1021/acsomega.2c02578

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  231. S. Prabhu, S.G. Bubbly, S.B. Gudennavar, Preparation and characterization of tungsten carbide/epoxy composites for γ-ray shielding. AIP Conf. Proc. 2451(1), 020035 (2022). https://doi.org/10.1063/5.0095211

    Article  CAS  Google Scholar 

  232. M.V. Muthamma, S. Prabhu, S.G. Bubbly et al., Micro and nano Bi2O3 filled epoxy composites: Thermal, mechanical and γ-ray attenuation properties. Appl. Radiat. Isot. 174, 109780 (2021). https://doi.org/10.1016/j.apradiso.2021.109780

    Article  CAS  PubMed  Google Scholar 

  233. S. Verma, S.S. Amritphale, S. Das, Development of advanced, x-ray radiation shielding panels by utilizing red mud-based polymeric organo-shielding gel-type material. Waste Biomass Valoriz. 8(6), 2165–2175 (2017). https://doi.org/10.1007/s12649-016-9701-3

    Article  CAS  Google Scholar 

  234. A.S. Ouda, Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding. Prog. Nucl. Energy 79, 48–55 (2015). https://doi.org/10.1016/j.pnucene.2014.11.009

    Article  CAS  Google Scholar 

  235. A. Evcin, Y.Y. Çelen, N.Ç. Bezir et al., Use of ilmenite and boron waste as a radiation shielding panel. AIP Conf. Proc. 2042(1), 020001 (2018). https://doi.org/10.1063/1.5078873

    Article  CAS  Google Scholar 

  236. K.D. Hopper, Orbital, thyroid, and breast superficial radiation shielding for patients undergoing diagnostic CT. Semin. Ultrasound, CT MRI 23(5), 423–427 (2002). https://doi.org/10.1016/S0887-2171(02)90013-2

    Article  Google Scholar 

  237. M.I. Dobynde, Y.Y. Shprits, A.Y. Drozdov et al., Beating 1 sievert: optimal radiation shielding of astronauts on a mission to mars. Space Weather (2021). https://doi.org/10.1029/2021SW002749

    Article  Google Scholar 

  238. J.-H. Cha, S. Kumar Sarath Kumar, J.-E. Noh et al., Ultra-high-molecular-weight polyethylene/hydrogen-rich benzoxazine composite with improved interlaminar shear strength for cosmic radiation shielding and space environment applications. Compos. Struct. 300, 116157 (2022). https://doi.org/10.1016/j.compstruct.2022.116157

    Article  CAS  Google Scholar 

  239. G. Lakshminarayana, S.O. Baki, K.M. Kaky et al., Investigation of structural, thermal properties and shielding parameters for multicomponent borate glasses for gamma and neutron radiation shielding applications. J. Non-Cryst. Solids 471, 222–237 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.06.001

    Article  CAS  Google Scholar 

  240. S.-C. Kim, K.-R. Dong, W.-K. Chung, Medical radiation shielding effect by composition of barium compounds. Ann. Nucl. Energy 47, 1–5 (2012). https://doi.org/10.1016/j.anucene.2012.04.014

    Article  CAS  Google Scholar 

  241. S.-C. Kim, K.-R. Dong, W.-K. Chung, Performance evaluation of a medical radiation shielding sheet with barium as an environment-friendly material. J. Korean Phys. Soc. 60(1), 165–170 (2012). https://doi.org/10.3938/jkps.60.165

    Article  CAS  Google Scholar 

  242. S.C. Kim, H.K. Lee, J.H. Cho, Analysis of low-dose radiation shield effectiveness of multi-gate polymeric sheets. Radiat. Eff. Defects Solids 169(7), 584–591 (2014). https://doi.org/10.1080/10420150.2014.920019

    Article  CAS  Google Scholar 

  243. S.-C. Kim, Y.-J. Kim, J.-S. Lee et al., Comparative analysis of the radiation shield effect in an abdominal CT scan. J. Korean Phys. Soc. 64(6), 929–935 (2014). https://doi.org/10.3938/jkps.64.929

    Article  CAS  Google Scholar 

  244. S.-C. Kim, S.-H. Cho, Analysis of the correlation between shielding material blending characteristics and porosity for radiation shielding films. Appl. Sci. (2019). https://doi.org/10.3390/app9091765

    Article  Google Scholar 

  245. A. Obeid, M. Roumie, M.S. Badawi et al., Evaluation of the effect of different nano-size of WO3 on the structural and mechanical properties of HDPE. J. Inorg. Organomet. Polym. Mater. 32(4), 1506–1519 (2022). https://doi.org/10.1007/s10904-021-02219-3

    Article  CAS  Google Scholar 

  246. S.-C. Kim, Analysis of shielding performance of radiation-shielding materials according to particle size and clustering effects. Appl. Sci. (2021). https://doi.org/10.3390/app11094010

    Article  PubMed  Google Scholar 

  247. S. Verma, S.S. Amritphale, S. Das, Synthesis and characterization of advanced red mud and MWCNTs based EMI shielding material via ceramic processing. Mater. Sci. Appl. 07(04), 192–201 (2016). https://doi.org/10.4236/msa.2016.74019

    Article  CAS  Google Scholar 

  248. S. Verma, S.S. Amritphale, S. Das, Development of advanced, x-ray radiation shielding panels by utilizing red mud-based polymeric organo-shielding gel-type material. Waste Biomass Valoriz. 8(6), 2165–2175 (2016). https://doi.org/10.1007/s12649-016-9701-3

    Article  CAS  Google Scholar 

  249. S. Verma, S.S. Amritphale, S. Das, Properties of a non-toxic, self-healing X-ray radiation shielding bandage developed using smart gel. Cellulose 24(7), 2939–2951 (2017). https://doi.org/10.1007/s10570-017-1310-1

    Article  CAS  Google Scholar 

  250. S. Verma, M. Mili, C. Sharma et al., Advanced X-ray shielding and antibacterial smart multipurpose fabric impregnated with polygonal shaped bismuth oxide nanoparticles in carbon nanotubes via green synthesis. Green Chem. Lett. Rev. 14(2), 272–285 (2021). https://doi.org/10.1080/17518253.2021.1912192

    Article  CAS  Google Scholar 

  251. Nasim Abuali G, Thomas J R, Thomas R, et al. Three dimensional finite element analysis of functionally graded radiation shielding nanoengineered sandwich composites. world academy of science, engineering and technology, international journal of mechanical, aerospace, industrial, mechatronic and manufacturing engineering. (2017). https://www.semanticscholar.org/paper/2c3ad9429873ac0fdbb0bf9daa885396d6f86a0a

  252. E. Afrianti, D. Tahir, B.Y.E.B. Jumpeno et al., Addition of lead (Pb)-nitrate filler on polymer composite aprons for x-ray radiation shielding. Atom Indones. (2021). https://doi.org/10.17146/aij.2021.1033

    Article  Google Scholar 

  253. A.M. Sürücü, S. Subaşı, A. Danish et al., Mechanical and radiation shielding properties of SWCNT reinforced polymer/glass fiber fabric-based nanocomposite containing different filler materials: a comparative study. J. Appl. Polym. Sci. 140(7), e53483 (2022). https://doi.org/10.1002/app.53483

    Article  CAS  Google Scholar 

  254. K. Şemsettin, S. Kilincarslan, A. İskender et al., Investigation of radiation keeping property of barite coated cloth via image processing method. AIP Conf. Proc. (2012). https://doi.org/10.1063/1.4751564

    Article  Google Scholar 

  255. F. Akarslan, T. Molla, A. İskender et al., Radiation protection by the barite coated fabrics via image processing methodology. Acta Phys. Pol. A (2014). https://doi.org/10.12693/aphyspola.125.316

    Article  Google Scholar 

  256. S. Kilincarslan, A. İskender, I.S. Üncü et al., Determination of radiation shielding properties of cotton polyester blend fabric coated with different barite rate. Acta Phys. Pol. A (2016). https://doi.org/10.12693/aphyspola.129.878

    Article  Google Scholar 

  257. B. Gogot Setyo, K. Hurijanto, W. Joshua et al., The attenuation coefficient of barite concrete subjected to gamma-ray radiation. MATEC Web Conf. (2019). https://doi.org/10.1051/matecconf/201925805030

    Article  Google Scholar 

  258. C. Tzong-Jer, The radiation properties of barite-xylem shielding board. IOP Conf. Ser.: Earth Environ. Sci. (2020). https://doi.org/10.1088/1755-1315/467/1/012062

    Article  Google Scholar 

  259. Kilincarslan S, İskender A, Üncü I S, et al. Investigation of the effect of coating method on the radiation shielding properties of terry cotton fabric. The Journal of Medical Research. (2018). https://www.semanticscholar.org/paper/6086139b23a5a0e6c01687cfb386714862009aa3

  260. W. Li, S. Chen, M. Peng et al., Prediction of γ-ray shielding performance and study of Bi/PU coated fabric. Text. Res. J. (2022). https://doi.org/10.1177/00405175221143523

    Article  Google Scholar 

  261. H. Özdemir, B. Camgöz, Gamma radiation shielding effectiveness of cellular woven fabrics. J. Ind. Text. 47(5), 712–726 (2016). https://doi.org/10.1177/1528083716670309

    Article  Google Scholar 

  262. Ö. Hakan, C. Berkay, The gamma radiation shielding effectiveness of textured steel yarn based fabrics. Ind. Text. 69(01), 44–49 (2018). https://doi.org/10.35530/it.069.01.1347

    Article  Google Scholar 

  263. S.C. Kim, J.S. Son, Manufacturing and performance evaluation of medical radiation shielding fiber with plasma thermal spray coating technology. Sci. Rep. 11(1), 22418 (2021). https://doi.org/10.1038/s41598-021-01897-w

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  264. S.C. Kim, Tungsten-based hybrid composite shield for medical radioisotope defense. Materials (Basel) (2022). https://doi.org/10.3390/ma15041338

    Article  PubMed Central  PubMed  Google Scholar 

  265. J.S. Son, S.-C. Kim, Improving the density of functional fabrics to protect radiation workers in radiology departments. Coatings (2022). https://doi.org/10.3390/coatings12081142

    Article  Google Scholar 

  266. S.S. Turkaslan, S.S. Ugur, B.E. Turkaslan et al., evaluating the x-ray-shielding performance of graphene-oxide-coated nanocomposite fabric. Materials (Basel) (2022). https://doi.org/10.3390/ma15041441

    Article  PubMed  Google Scholar 

  267. T. Kremic, D.J. Anderson, J.W. Dankanich, NASA’s in-space propulsion technology project overview and mission applicability: 2008 IEEE aerospace conference (IEEE, 2008)

    Book  Google Scholar 

  268. M. Meerman, T.C.L. Bracco Gartner, J.W. Buikema et al., Myocardial disease and long-distance space travel: solving the radiation problem. Front. Cardiovasc. Med. 8, 631985 (2021). https://doi.org/10.3389/fcvm.2021.631985

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  269. NASA to award grants, Nature 483(7390), 501–501 (2012). https://doi.org/10.1038/nj7390-501d

    Article  CAS  Google Scholar 

  270. D.F. Landau, J.M. Longuski, Comparative assessment of human–mars-mission technologies and architectures. Acta Astronaut. 65(7–8), 893–911 (2009). https://doi.org/10.1016/j.actaastro.2009.02.008

    Article  CAS  Google Scholar 

  271. B.G. Drake, Human exploration of mars, design reference architecture 5.0. J. Cosmol. (2010). https://doi.org/10.1109/AERO.2010.5446736

    Article  Google Scholar 

  272. D.V. Smitherman, Habitation concepts for human missions beyond low-earth-orbit. Am. Inst. Aeronaut. Astronaut. (2016). https://doi.org/10.2514/6.2016-5216

    Article  Google Scholar 

  273. C.R. Joyner, J. Horton, T.S. Kokan et al., Architecture sensitivity to propulsion choices for human mars missions. Am. Inst. Aeronaut. Astronaut. (2016). https://doi.org/10.2514/6.2016-5458

    Article  Google Scholar 

  274. M. Borowitz, J. Battat, Multidisciplinary evaluation of next steps for human space exploration: technical and strategic analysis of options. Space Policy 35, 33–42 (2016). https://doi.org/10.1016/j.spacepol.2016.02.004

    Article  Google Scholar 

  275. D. Manzey, Human missions to mars: new psychological challenges and research issues. Am. Inst. Aeronaut. Astronaut. (2003). https://doi.org/10.2514/6.IAC-03-G.4.08

    Article  Google Scholar 

  276. J. Barthel, N. Sarigul-Klijn, A review of radiation shielding needs and concepts for space voyages beyond Earth’s magnetic influence. Progress Aerospace Sci. 110, 100553 (2019). https://doi.org/10.1016/j.paerosci.2019.100553

    Article  Google Scholar 

  277. F.A. Cucinotta, M. Alp, B. Rowedder et al., Safe days in space with acceptable uncertainty from space radiation exposure. Life Sci. Space Res. (Amst) 5, 31–38 (2015). https://doi.org/10.1016/j.lssr.2015.04.002

    Article  PubMed  Google Scholar 

  278. C.J. Mertens, T.C. Slaba, S. Hu, Active dosimeter-based estimate of astronaut acute radiation risk for real-time solar energetic particle events. Space Weather 16(9), 1291–1316 (2018). https://doi.org/10.1029/2018sw001971

    Article  Google Scholar 

  279. L. Zhao, D. Mi, Y. Sun, Issues and challenges of space radiation risk assessment in manned deep space exploration missions. Chin. Sci. Bull. 63(16), 1523–1537 (2018). https://doi.org/10.1360/n972018-00071

    Article  Google Scholar 

  280. L.S. Carnell, Spaceflight medical countermeasures: a strategic approach for mitigating effects from solar particle events. Int. J. Radiat. Biol. 97(sup1), S125–S131 (2021). https://doi.org/10.1080/09553002.2020.1820603

    Article  CAS  PubMed  Google Scholar 

  281. Sullivan J J, Schaefer H J. Atlas of nuclear emulsion micrographs from personnel dosimeters of manned space missions. (1976). https://doi.org/10.21236/ada025970

  282. N. Desai, E. Davis, P. O’neill et al., Immunofluorescence detection of clustered gamma-H2AX foci induced by HZE-particle radiation. Radiat. Res. 164, 518–522 (2005). https://doi.org/10.1667/rr3431.1

    Article  CAS  PubMed  Google Scholar 

  283. S.B. Curtis, M.E. Vazquez, J.W. Wilson et al., Cosmic ray hits in the central nervous system at solar maximum. Adv. Space Res. 25(10), 2035–2040 (2000). https://doi.org/10.1016/s0273-1177(99)01015-7

    Article  CAS  PubMed  Google Scholar 

  284. F.A. Cucinotta, M. Alp, F.M. Sulzman et al., Space radiation risks to the central nervous system. Life Sci. Space Res. 2, 54–69 (2014). https://doi.org/10.1016/j.lssr.2014.06.003

    Article  Google Scholar 

  285. F.A. Cucinotta, E. Cacao, M. Alp, Space radiation quality factors and the delta ray dose and dose-rate reduction effectiveness factor. Health Phys. 110(3), 262–266 (2016). https://doi.org/10.1097/HP.0000000000000442

    Article  CAS  PubMed  Google Scholar 

  286. P. Sharma, P. Guida, P. Grabham, Effects of Fe particle irradiation on human endothelial barrier structure and function. Life Sci. Space Res. 2, 29–37 (2014). https://doi.org/10.1016/j.lssr.2014.05.002

    Article  Google Scholar 

  287. N.A. Decarolis, P.D. Rivera, F. Ahn et al., (56)Fe particle exposure results in a long-lasting increase in a cellular index of genomic instability and transiently suppresses adult hippocampal neurogenesis in vivo. Life Sci. Space Res. (Amst) 2, 70–79 (2014). https://doi.org/10.1016/j.lssr.2014.06.004

    Article  PubMed  Google Scholar 

  288. E. Nzabarushimana, S. Prior, I.R. Miousse et al., Combined exposure to protons and (56)Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung. Life Sci. Space Res. (Amst) 7, 1–8 (2015). https://doi.org/10.1016/j.lssr.2015.08.001

    Article  PubMed  Google Scholar 

  289. J. Raber, T. Marzulla, A. Kronenberg et al., (16)Oxygen irradiation enhances cued fear memory in B6D2F1 mice. Life Sci. Space Res. (Amst) 7, 61–65 (2015). https://doi.org/10.1016/j.lssr.2015.10.004

    Article  PubMed  Google Scholar 

  290. Huff J L. Human research program space radiation program element risk of acute radiation syndromes due to solar particle events. 1–66 (2016). https://www.researchgate.net/publication/328748042_Human_Research_Program_Space_Radiation_Program_Element_Risk_of_Acute_Radiation_Syndromes_due_to_Solar_Particle_Events

  291. D.V. Reames, Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 90(3/4), 413–491 (1999). https://doi.org/10.1023/a:1005105831781

    Article  CAS  Google Scholar 

  292. Kim M-H, Wilson J, Cucinotta F, et al. Contribution of high charge and energy (HZE) ions during solar-particle event of Sept 29, 1989. (1999). https://www.researchgate.net/publication/2311736_Contribution_of_High_Charge_and_Energy_HZE_Ions_During_Solar-Particle_Event_of_September_29_1989

  293. S.A. Walker, M. Clowdsley, H.L. Abston et al., Radiation exposure analyses supporting the development of solar particle event shielding technologies. Am. Inst. Aeronaut. Astronaut. (2013). https://doi.org/10.2514/6.2013-3402

    Article  Google Scholar 

  294. J.W. Cronin, Cosmic rays: the most energetic particles in the universe. Rev. Mod. Phys. 71(2), S165–S172 (1999). https://doi.org/10.1103/RevModPhys.71.S165

    Article  CAS  Google Scholar 

  295. Gebauer I, Boer W D. An anisotropic propagation model for galactic cosmic rays. Physics. (2009). http://arxiv.org/abs/0910.2027v1

  296. Gebauer I. an anisotropic model for galactic cosmic ray transport and its implications for indirect dark matter searches[D]. (2010).

  297. C. Zeitlin, D.M. Hassler, F.A. Cucinotta et al., Measurements of energetic particle radiation in transit to mars on the mars science laboratory. Science 340(6136), 1080–1084 (2013). https://doi.org/10.1126/science.1235989

    Article  CAS  PubMed  Google Scholar 

  298. J. Kohler, B. Ehresmann, C. Zeitlin et al., Measurements of the neutron spectrum in transit to mars on the mars science laboratory. Life Sci. Space Res. (Amst) 5, 6–12 (2015). https://doi.org/10.1016/j.lssr.2015.03.001

    Article  CAS  PubMed  Google Scholar 

  299. D.M. Hassler, C. Zeitlin, R.F. Wimmer-Schweingruber et al., Mars’ surface radiation environment measured with the mars science laboratory’s curiosity rover. Science 343(6169), 1244797 (2014). https://doi.org/10.1126/science.1244797

    Article  CAS  PubMed  Google Scholar 

  300. N.A. Schwadron, J.B. Blake, A.W. Case et al., Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration? Space Weather 12(11), 622–632 (2014). https://doi.org/10.1002/2014sw001084

    Article  Google Scholar 

  301. T.K. Gaisser, T. Stanev, Cosmic rays. Eur. Phys. J. C 15(1–4), 150–156 (2000). https://doi.org/10.1007/bf02683416

    Article  Google Scholar 

  302. D. Matthiä, T. Berger, A.I. Mrigakshi et al., A ready-to-use galactic cosmic ray model. Adv. Space Res. 51(3), 329–338 (2013). https://doi.org/10.1016/j.asr.2012.09.022

    Article  CAS  Google Scholar 

  303. Avdeev S, Bidoli V, Bonvicini W, et al. In-flight performances of SilEye-2 Experiment and cosmic ray abundances inside space station Mir. arXiv: Astrophysics. (2001). Doi:https://doi.org/10.1088/0954-3899/27/10/307/meta

  304. L. Narici, F. Belli, V. Bidoli et al., The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation. Adv. Space Res. 33(8), 1352–1357 (2004). https://doi.org/10.1016/j.asr.2003.09.052

    Article  CAS  PubMed  Google Scholar 

  305. W.G. Sannita, M. Acquaviva, S.L. Ball et al., Effects of heavy ions on visual function and electrophysiology of rodents: the ALTEA-MICE project. Adv. Space Res. 33(8), 1347–1351 (2004). https://doi.org/10.1016/j.asr.2003.11.007

    Article  CAS  PubMed  Google Scholar 

  306. V. Zaconte, M. Casolino, L. Di Fino et al., High energy radiation fluences in the ISS-USLab: ion discrimination and particle abundances. Radiat. Meas. 45(2), 168–172 (2010). https://doi.org/10.1016/j.radmeas.2010.01.020

    Article  CAS  Google Scholar 

  307. V. Zaconte, M. Casolino, C. De Santis et al., The radiation environment in the ISS-USLab measured by ALTEA: spectra and relative nuclear abundances in the polar, equatorial and SAA regions. Adv. Space Res. 46(6), 797–799 (2010). https://doi.org/10.1016/j.asr.2010.02.032

    Article  CAS  Google Scholar 

  308. L. Narici, T. Berger, D. Matthia et al., Radiation measurements performed with active detectors relevant for human space exploration. Front. Oncol. 5, 273 (2015). https://doi.org/10.3389/fonc.2015.00273

    Article  PubMed Central  PubMed  Google Scholar 

  309. L. Narici, M. Casolino, L. Di Fino et al., Performances of kevlar and polyethylene as radiation shielding on-board the international space station in high latitude radiation environment. Sci. Rep. 7(1), 1644 (2017). https://doi.org/10.1038/s41598-017-01707-2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  310. M. Vuolo, G. Baiocco, S. Barbieri et al., Exploring innovative radiation shielding approaches in space: a material and design study for a wearable radiation protection spacesuit. Life Sci. Space Res. (Amst) 15, 69–78 (2017). https://doi.org/10.1016/j.lssr.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  311. G. Baiocco, M. Giraudo, L. Bocchini et al., A water-filled garment to protect astronauts during interplanetary missions tested on board the ISS. Life Sci. Space Res. (Amst) 18, 1–11 (2018). https://doi.org/10.1016/j.lssr.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  312. G. Baiocco, L. Bocchini, M. Giraudo et al., Innovative solutions for personal radiation shielding in space. Radiat. Prot. Dosimetry 183(1–2), 228–232 (2019). https://doi.org/10.1093/rpd/ncy216

    Article  CAS  PubMed  Google Scholar 

  313. G. Baiocco, M. Giraudo, L. Bocchini et al., The PERSEO experience: a water-filled garment prototype for personal radiation protection of astronauts successfully tested on board the international space station. Aerotec. Missili Spaz. 99(2), 111–114 (2020). https://doi.org/10.1007/s42496-020-00048-0

    Article  Google Scholar 

  314. A.A. Bahadori, M. Van Baalen, M.R. Shavers et al., The effect of anatomical modeling on space radiation dose estimates: a comparison of doses for NASA phantoms and the 5th, 50th, and 95th percentile male and female astronauts. Phys. Med. Biol. 56(6), 1671–1694 (2011). https://doi.org/10.1088/0031-9155/56/6/010

    Article  PubMed  Google Scholar 

  315. A. Bahadori, M. Shavers, M.V. Baalen et al., MO-F-BRA-05: comparison of organ dosimetry for astronaut phantoms: earth-based vs. microgravity-based anthropometry and body positioning. Med. Phys. 38, 3721–3721 (2011). https://doi.org/10.1118/1.3613000

    Article  Google Scholar 

  316. A.A. Bahadori, M.V. Baalen, M.R. Shavers et al., Dosimetric impacts of microgravity: an analysis of 5th, 50th and 95th percentile male and female astronauts. Phys. Med. Biol. 57(4), 1047–1070 (2012). https://doi.org/10.1088/0031-9155/57/4/1047

    Article  PubMed  Google Scholar 

  317. A.A. Bahadori, T. Sato, T.C. Slaba et al., A comparative study of space radiation organ doses and associated cancer risks using PHITS and HZETRN. Phys. Med. Biol. 58(20), 7183–7207 (2013). https://doi.org/10.1088/0031-9155/58/20/7183

    Article  PubMed  Google Scholar 

  318. M.M. Sands, D. Borrego, M.R. Maynard et al., Comparison of methods for individualized astronaut organ dosimetry: morphometry-based phantom library versus body contour autoscaling of a reference phantom. Life Sci. Space Res. (Amst) 15, 23–31 (2017). https://doi.org/10.1016/j.lssr.2017.07.002

    Article  PubMed  Google Scholar 

  319. T.C. Slaba, A.A. Bahadori, B.D. Reddell et al., Optimal shielding thickness for galactic cosmic ray environments. Life Sci. Space Res. (Amst) 12, 1–15 (2017). https://doi.org/10.1016/j.lssr.2016.12.003

    Article  PubMed  Google Scholar 

  320. A. Bahadori, E. Semones, M. Ewert et al., Measuring space radiation shielding effectiveness. EPJ Web Conf. (2017). https://doi.org/10.1051/epjconf/201715304001

    Article  Google Scholar 

  321. S. Michael, H. Felicitas, H. Stefan et al., Characterization of novel lightweight radiation shielding materials for space applications. IEEE Trans. Nucl. Sci. (2016). https://doi.org/10.1109/radecs.2016.8093142

    Article  Google Scholar 

  322. D. Lasi, M. Tulej, S. Meyer et al., Shielding an MCP detector for a space-borne mass spectrometer against the harsh radiation environment in jupiter’s magnetosphere. IEEE Trans. Nucl. Sci. 64(1), 605–613 (2017). https://doi.org/10.1109/tns.2016.2614040

    Article  CAS  Google Scholar 

  323. S.A. Thibeault, J.H. Kang, G. Sauti et al., Nanomaterials for radiation shielding. MRS Bull. 40(10), 836–841 (2015). https://doi.org/10.1557/mrs.2015.225

    Article  CAS  Google Scholar 

  324. M. Ghazizadeh, J.E. Estevez, A.D. Kelkar, Boron nitride nanotubes for space radiation shielding. Int. J. Nano Stud. Technol. (2015). https://doi.org/10.19070/2167-8685-150007e

    Article  Google Scholar 

  325. Estevez J E, Ghazizadeh M, Ryan J, et al. Nano-modified epoxy resins as space radiation shielding materials. International SAMPE technical conference. (2014). https://www.mendeley.com/catalogue/79fdcc98-50ab-32ee-9594-acb06fbe1ca4/

  326. Thibeault S A, Fay C C, Lowther S E, et al. Radiation shielding materials containing hydrogen, boron, and nitrogen: systematic computational and experimental study-phase I. NIAC FINAL REPORT. (2012). https://www.researchgate.net/publication/318661760_Radiation_Shielding_Materials_Containing_Hydrogen_Boron_and_Nitrogen_Systematic_Computational_and_Experimental_Study-Phase_I_NIAC_FINAL_REPORT

  327. A.C. Dillon, K.M. Jones, T.A. Bekkedahl et al., Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623), 377–379 (1997). https://doi.org/10.1038/386377a0

    Article  CAS  Google Scholar 

  328. G. Mpourmpakis, G.E. Froudakis, Why boron nitride nanotubes are preferable to carbon nanotubes for hydrogen storage? An ab initio theoretical study. Catal. Today 120(3–4), 341–345 (2007). https://doi.org/10.1016/j.cattod.2006.09.023

    Article  CAS  Google Scholar 

  329. C. Tang, Y. Bando, X. Ding et al., Catalyzed collapse and enhanced hydrogen storage of BN nanotubes. J. Am. Chem. Soc. 124(49), 14550–14551 (2002). https://doi.org/10.1021/ja028051e

    Article  CAS  PubMed  Google Scholar 

  330. R. Ma, Y. Bando, H. Zhu et al., Hydrogen uptake in boron nitride nanotubes at room temperature. J. Am. Chem. Soc. 124(26), 7672–7673 (2002). https://doi.org/10.1021/ja026030e

    Article  CAS  PubMed  Google Scholar 

  331. X.M. Li, W.Q. Tian, X.-R. Huang et al., Adsorption of hydrogen on novel Pt-doped BN nanotube: a density functional theory study. J. Mol. Struct. (Thoechem) 901(1–3), 103–109 (2009). https://doi.org/10.1016/j.theochem.2009.01.019

    Article  CAS  Google Scholar 

  332. J.E. Estevez, M. Ghazizadeh, A.D. Kelkar, Property prediction of single wall boron nitride nanotubes using MD simulation. Am. Inst. Aeronaut. Astronaut. (2013). https://doi.org/10.2514/6.2013-1856

    Article  Google Scholar 

  333. Joseph E E, Mahdi G, James G R, et al. Simulation of Hydrogenated Boron Nitride Nanotube’s Mechanical Properties for Radiation Shielding Applications. International Scholarly and Scientific Research & Innovation. 8(1),61–65 (2014). https://www.semanticscholar.org/paper/1561f0897930b1bd47227d8f6c1a68ee20cd3824

  334. Mahdi G, Joseph E E, Ajit D K, et al. Mechanical properties prediction of hydrogenated boron nitride nanotube’s using molecular dynamic simulations. (2014). https://scholar.google.com/scholar?q=Mechanical

  335. Paige C, Newman D, Lombardo S J H. An integrated innovative 3D radiation protection fabric for advanced spacesuits and systems. (2020). Doi:https://doi.org/10.1109/aero47225.2020.9172794

  336. C.A. Paige, Designing the smallest manned spacecraft: david clark company and the evolution of the space suit. Am. Inst. Aeronaut. Astronaut. (2020). https://doi.org/10.2514/6.2020-1360

    Article  Google Scholar 

  337. Cody A P, Dava J N, Jonah P. Advanced thermal, radiation, and dust protection for spacesuits and space systems. (2020). https://scholar.google.com/scholar?q=Advanced

  338. S. Ozturk, Radiation shielding properties of gadolinium-doped water. Phys. Scr. 96(5), 055402 (2021). https://doi.org/10.1088/1402-4896/abecfb

    Article  Google Scholar 

  339. A. Gohel, R. Makwana, B. Soni, Evaluating shielding materials for high energy space radiation. IOP Conf. Ser.: Mater. Sci. Eng. 1221(1), 012003 (2022). https://doi.org/10.1088/1757-899x/1221/1/012003

    Article  CAS  Google Scholar 

  340. M. Naito, N. Hasebe, K. Yoshida et al., Neutron fluxes from martian satellites as a function of chemical composition and hydrogen content. J. Phys. Soc. Jpn. (2016). https://doi.org/10.7566/JPSCP.11.050003

    Article  Google Scholar 

  341. M. Naito, N. Hasebe, H. Nagaoka et al., Iron distribution of the moon observed by the kaguya gamma-ray spectrometer: geological implications for the south pole-aitken basin, the orientale basin, and the tycho crater. Icarus 310, 21–31 (2018). https://doi.org/10.1016/j.icarus.2017.12.005

    Article  CAS  Google Scholar 

  342. M. Naito, N. Hasebe, H. Nagaoka et al., Potassium and thorium abundances at the south pole-aitken basin obtained by the kaguya gamma-ray spectrometer. J. Geophys. Res.: Planets 124(9), 2347–2358 (2019). https://doi.org/10.1029/2019je005935

    Article  CAS  Google Scholar 

  343. M. Naito, N. Hasebe, M. Shikishima et al., Radiation dose and its protection in the Moon from galactic cosmic rays and solar energetic particles: at the lunar surface and in a lava tube. J. Radiol. Prot. 40(4), 947–961 (2020). https://doi.org/10.1088/1361-6498/abb120

    Article  CAS  PubMed  Google Scholar 

  344. S. Kodaira, M. Naito, Y. Uchihori et al., Space radiation dosimetry at the exposure facility of the international space station for the tanpopo mission. Astrobiology 21(12), 1473–1478 (2021). https://doi.org/10.1089/ast.2020.2427

    Article  CAS  PubMed  Google Scholar 

  345. C.V. More, Z. Alsayed, M.S. Badawi et al., Polymeric composite materials for radiation shielding: a review. Environ. Chem. Lett. 19(3), 2057–2090 (2021). https://doi.org/10.1007/s10311-021-01189-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  346. E.A. Plis, M.T. Bengtson, D.P. Engelhart et al., Ground testing of the 16th materials international space station experiment materials. J. Spacecr. Rockets (2023). https://doi.org/10.2514/1.A35502

    Article  Google Scholar 

  347. M. Liikanen, K. Grönman, I. Deviatkin et al., Construction and demolition waste as a raw material for wood polymer composites—assessment of environmental impacts. J. Clean. Prod. 225, 716–727 (2019). https://doi.org/10.1016/j.jclepro.2019.03.348

    Article  Google Scholar 

  348. J. Ma, G. Qin, Y. Zhang et al., Heavy metal removal from aqueous solutions by calcium silicate powder from waste coal fly-ash. J. Clean. Prod. 182, 776–782 (2018). https://doi.org/10.1016/j.jclepro.2018.02.115

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Dept. of Military Installation, Army Logistical University of PLA for the financial support of this study. Thanks are also due for the support of project National High Technology Research and Development Program (863 Program) (2013AA030704), A Demonstration Study of The Need for Radioactive Aerosol High-altitude Fast-reverse Suppression Equipment (LJ20222Z060077), and Study on Monitoring, Assessment and Control Measures of Non-traditional nuclear and radiation Safety Risks during wartime (LQ-QN-202216).

Funding

The Army Logistical University of the PLA provided some funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

CHZ contributed to the idea for the article, literature search, and data analysis, writing—the original draft, writing—the review, and editing. QK contributed to article review, general analysis, structural layout, and supervision. ZSD contributed to literature collation, classification, and proofreading. BQ contributed to writing—review, and editing. XJF contributed to writing—review, and editing. HYL contributed to writing—the article content proofreading and classification. YYL contributed to writing—the article Chart Embellishment.

Corresponding author

Correspondence to Chenhao Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

We confirm that this work is original and has not been published elsewhere, nor it is currently under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 1.

Table 1 Comparison of X-Ray shielding performance of polymeric materials

See Table 2.

Table 2 Comparison of gamma-ray shielding performance of polymeric materials

See Table 3.

Table 3 Comparison of gamma-ray shielding performance of IEMR shielding materials

See Table 4.

Table 4 Comparison of neutron shielding performance of polymeric materials

See Table 5.

Table 5 Space radiation shielding material performance comparison

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Kang, Q., Duan, Z. et al. Development of Polymer Composites in Radiation Shielding Applications: A Review. J Inorg Organomet Polym 33, 2191–2239 (2023). https://doi.org/10.1007/s10904-023-02725-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02725-6

Keywords

Navigation