Skip to main content
Log in

Carbon Dots from Natural‐Product: Applications as Adsorbent and Sensing of Fe3+ Ions

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Freshwater contamination is a significant concern due to the increasing pollution by industrial activities. Dyes have a wide range of uses and are introduced at different stages of manufacture, raising the risk of unwanted human and environmental contact. Consequently, the demand for an effective method for removing dyes has become more important than before. In this context, carbon dots have been synthesized by the green synthesis method from coriander leaves (C-CDs) and used as a prospective adsorbent to remove (MB) methylene blue dye from aqueous solution. The as-synthesized C-CDs are characterized by HR-TEM, XRD, XPS, FTIR, Zeta potential, UV–visible, and photoluminescence (PL). Effects of different controlling parameters such as adsorbent dosage, pH, contact time, and initial MB dye concentration were investigated. The highest adsorption efficiency (82.6%) and maximum adsorption capacity (96.05 mg/g) of MB were obtained at optimum conditions (303 K). The adsorption isotherm data could be fitted well by Freundlich model, and the experimental data fitted to the Pseudo-Second-Order kinetic model. It is worth noting that C-CDs exhibited excellent sensitivity and high fluorescence quenching effect on Fe3+ ions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D.V. Chapman, T. Sullivan, The role of water quality monitoring in the sustainable use of ambient waters. One Earth 5, 132–137 (2022). https://doi.org/10.1016/j.oneear.2022.01.008

    Article  Google Scholar 

  2. E.F. Asamoah, M. Di Marco, J.E.M. Watson et al., Land-use and climate risk assessment for Earth’s remaining wilderness. Curr. Biol. 32, 4890-4899.e4 (2022). https://doi.org/10.1016/j.cub.2022.10.016

    Article  CAS  PubMed  Google Scholar 

  3. M. Adel, M.A. Ahmed, M.A. Elabiad, A.A. Mohamed, Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: a critical review. Environ. Nanotechnol. Monit. Manag. 18, 100719 (2022). https://doi.org/10.1016/j.enmm.2022.100719

    Article  CAS  Google Scholar 

  4. P. Sharma, H.M.N. Iqbal, R. Chandra, Evaluation of pollution parameters and toxic elements in wastewater of pulp and paper industries in India: a case study. Chem. Environ. Eng. 5, 100163 (2022). https://doi.org/10.1016/j.cscee.2021.100163

    Article  CAS  Google Scholar 

  5. C. Wang, J. Li, L. Wang et al., Adsorption of dye from wastewater by zeolites synthesized from fly ash: kinetic and equilibrium studies. Chin. J. Chem. Eng. 17, 513–521 (2009). https://doi.org/10.1016/S1004-9541(08)60239-6

    Article  Google Scholar 

  6. S.A. Ansari, F. Khan, A. Ahmad, Cauliflower leave, an agricultural waste biomass adsorbent, and its application for the removal of MB Dye from aqueous solution: equilibrium, kinetics, and thermodynamic studies. Int. J. Anal. Chem. (2016). https://doi.org/10.1155/2016/8252354

    Article  PubMed  PubMed Central  Google Scholar 

  7. T.M. Eldeeb, U.O. Aigbe, K.E. Ukhurebor et al., Adsorption of methylene blue (MB) dye on ozone, purified and sonicated sawdust biochars. Biomass Convers. Biorefinery (2022). https://doi.org/10.1007/s13399-022-03015-w

    Article  Google Scholar 

  8. E.I. Unuabonah, G.U. Adie, L.O. Onah, O.G. Adeyemi, Multistage optimization of the adsorption of methylene blue dye onto defatted Carica papaya seeds. Chem. Eng. J. 155, 567–579 (2009). https://doi.org/10.1016/j.cej.2009.07.012

    Article  CAS  Google Scholar 

  9. M.J. Uddin, R.E. Ampiaw, W. Lee, Adsorptive removal of dyes from wastewater using a metal-organic framework: a review. Chemosphere 284, 131314 (2021). https://doi.org/10.1016/j.chemosphere.2021.131314

    Article  CAS  PubMed  Google Scholar 

  10. S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 65, 201–222 (2018). https://doi.org/10.1016/j.jes.2017.03.011

    Article  CAS  Google Scholar 

  11. H. Sadegh, G.A.M. Ali, Potential applications of nanomaterials in wastewater treatment, in Advanced Treatment Techniques for Industrial Wastewater (IGI Global, Pennsylvania, 2019), pp 51–61

  12. A. Abu-Nada, A. Abdala, G. McKay, Removal of phenols and dyes from aqueous solutions using graphene and graphene composite adsorption: a review. J. Environ. Chem. Eng. 9, 105858 (2021). https://doi.org/10.1016/j.jece.2021.105858

    Article  CAS  Google Scholar 

  13. O.A. Adeleke, A.A.A. Latiff, M.R. Saphira et al., Locally derived activated carbon from domestic, agricultural and industrial wastes for the treatment of palm oil mill effluent, in Nanotechnology in water and wastewater treatment (Elsevier, Amsterdam, 2019), pp. 35–62

  14. M. Zhang, Q. Yao, C. Lu et al., Layered double hydroxide–carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl. Mater. Interfaces 6, 20225–20233 (2014). https://doi.org/10.1021/am505765e

    Article  CAS  PubMed  Google Scholar 

  15. N. Jamaludin, S.A. Rashid, T. Tan, Natural biomass as carbon sources for the synthesis of photoluminescent carbon dots, in Synthesis, Technology and Applications of Carbon Nanomaterials (Elsevier, Amsterdam, 2019), pp. 109–134

  16. K. Cheng, W. Shao, H. Li et al., Biomass derived carbon dots mediated exciton dissociation in rose flower-like carbon nitride for boosting photocatalytic performance. Ind. Crops Prod. 192, 116086 (2023). https://doi.org/10.1016/j.indcrop.2022.116086

    Article  CAS  Google Scholar 

  17. C. Kang, Y. Huang, H. Yang et al., A review of carbon dots produced from biomass wastes. Nanomaterials 10, 2316 (2020). https://doi.org/10.3390/nano10112316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. H. SalimiShahraki, Ahmad A. Qurtulen, Synthesis, characterization of carbon dots from onion peel and their application as absorbent and anticancer activity. Inorg. Chem. Commun. 150, 110514 (2023). https://doi.org/10.1016/j.inoche.2023.110514

    Article  CAS  Google Scholar 

  19. H.S. Shahraki, R. Bushra, N. Shakeel et al., Papaya peel waste carbon dots/reduced graphene oxide nanocomposite: from photocatalytic decomposition of methylene blue to antimicrobial activity. J. Bioresour. Bioprod. (2023). https://doi.org/10.1016/j.jobab.2023.01.009

    Article  Google Scholar 

  20. J. Hu, W. Jia, X. Yu et al., Carbon dots improve the nutritional quality of coriander (Coriandrum sativum L.) by promoting photosynthesis and nutrient uptake. Environ. Sci. Nano 9, 1651–1661 (2022). https://doi.org/10.1039/D1EN01079D

    Article  CAS  Google Scholar 

  21. W. Meng, X. Bai, B. Wang et al., Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2, 172–192 (2019). https://doi.org/10.1002/eem2.12038

    Article  CAS  Google Scholar 

  22. N. Tejwan, S.K. Saha, J. Das, Multifaceted applications of green carbon dots synthesized from renewable sources. Adv. Colloid Interfaces Sci. 275, 102046–48 (2020). https://doi.org/10.1016/j.cis.2019.102046

    Article  CAS  Google Scholar 

  23. C. Sarkar, A.R. Chowdhuri, A. Kumar et al., One pot synthesis of carbon dots decorated carboxymethyl cellulose- hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing. Carbohydr. Polym. 181, 710–718 (2018). https://doi.org/10.1016/j.carbpol.2017.11.091

    Article  CAS  PubMed  Google Scholar 

  24. Y. Chen, X. Sun, W. Pan et al., Fe3+-sensitive carbon dots for detection of Fe3+ in aqueous solution and intracellular imaging of Fe3+ inside fungal cells. Front. Chem. 7, 1–9 (2020). https://doi.org/10.3389/fchem.2019.00911

    Article  CAS  Google Scholar 

  25. W. Liu, H. Diao, H. Chang et al., Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging. Sensors Actuators B Chem. 241, 190–198 (2017). https://doi.org/10.1016/j.snb.2016.10.068

    Article  CAS  Google Scholar 

  26. M. Zulfajri, H.N. Abdelhamid, S. Sudewi et al., Plant part-derived carbon dots for biosensing. Biosensors 10, 68 (2020). https://doi.org/10.3390/bios10060068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. X. Sun, Y. Lei, Fluorescent carbon dots and their sensing applications. TrAC Trends Anal. Chem. 89, 163–180 (2017). https://doi.org/10.1016/j.trac.2017.02.001

    Article  CAS  Google Scholar 

  28. J. Mondal, S.K. Srivastava, Green synthesis of carbon dot weak gel from pear juice: optical properties and sensing application. ChemistrySelect 3, 8444–8457 (2018). https://doi.org/10.1002/slct.201801383

    Article  CAS  Google Scholar 

  29. A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential application as antioxidants, sensors and bioimaging agents. Analyst 140, 4260–4269 (2015). https://doi.org/10.1039/c5an00454c

    Article  CAS  PubMed  Google Scholar 

  30. U.A. Rani, L.Y. Ng, C.Y. Ng, E. Mahmoudi, A review of carbon quantum dots and their applications in wastewater treatment. Adv. Colloid Interfaces Sci. 278, 102124–26 (2020). https://doi.org/10.1016/j.cis.2020.102124

    Article  CAS  Google Scholar 

  31. P.O. Bedolla, G. Feldbauer, M. Wolloch et al., Effects of van der Waals interactions in the adsorption of isooctane and ethanol on Fe(100) surfaces. J. Phys. Chem. C 118, 17608–17615 (2014). https://doi.org/10.1021/jp503829c

    Article  CAS  Google Scholar 

  32. A. Soltani, M. Faramarzi, S.A. Mousavi Parsa, A review on adsorbent parameters for removal of dye products from industrial wastewater. Water Qual. Res. J. 56, 181–193 (2021). https://doi.org/10.2166/wqrj.2021.023

    Article  CAS  Google Scholar 

  33. S. Banerjee, M.C. Chattopadhyaya, Adsorption characteristics for the removal of a toxic dye, tartrazine from aqueous solutions by a low cost agricultural by-product. Arab. J. Chem. 10, S1629–S1638 (2017). https://doi.org/10.1016/j.arabjc.2013.06.005

    Article  CAS  Google Scholar 

  34. T. Teymoorian, N. Hashemi, M.H. Mousazadeh, Z. Entezarian, N, S doped carbon quantum dots inside mesoporous silica for effective adsorption of methylene blue dye. SN Appl. Sci. 3, 1–14 (2021). https://doi.org/10.1007/s42452-021-04287-z

    Article  CAS  Google Scholar 

  35. M.A. Rahman, S.M.R. Amin, A.M.S. Alam, Removal of methylene blue from waste water using activated carbon prepared from rice husk. Dhaka Univ. J. Sci. 60, 185–189 (2012). https://doi.org/10.3329/dujs.v60i2.11491

    Article  CAS  Google Scholar 

  36. N. Hasani, T. Selimi, A. Mele et al., Theoretical, equilibrium, kinetics and thermodynamic investigations of methylene blue adsorption onto lignite coal. Molecules 27, 1856 (2022). https://doi.org/10.3390/molecules27061856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. Ederer, P. Ecorchard, M.Š Slušná et al., A study of methylene blue dye interaction and adsorption by monolayer graphene oxide. Adsorpt. Sci. Technol. 2022, 1–16 (2022). https://doi.org/10.1155/2022/7385541

    Article  CAS  Google Scholar 

  38. F. Mohamed, M. Shaban, S.K. Zaki et al., Activated carbon derived from sugarcane and modified with natural zeolite for efficient adsorption of methylene blue dye: experimentally and theoretically approaches. Sci. Rep. 12, 18031 (2022). https://doi.org/10.1038/s41598-022-22421-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. M.S. Momina, I. Suzylawati, Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating. J. Water Process. Eng. 34, 101155–57 (2020). https://doi.org/10.1016/j.jwpe.2020.101155

    Article  Google Scholar 

  40. K. Bhattacharyya, A. Sharma, Kinetics and thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dye Pigment 65, 51–59 (2005). https://doi.org/10.1016/j.dyepig.2004.06.016

    Article  CAS  Google Scholar 

  41. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: coconut (Cocos nucifera) bunch waste. J. Hazard. Mater. 158, 65–72 (2008). https://doi.org/10.1016/j.jhazmat.2008.01.034

    Article  CAS  PubMed  Google Scholar 

  42. V. Vadivelan, K.V. Kumar, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J. Colloid Interfaces Sci. 286, 90–100 (2005). https://doi.org/10.1016/j.jcis.2005.01.007

    Article  CAS  Google Scholar 

  43. I. Sierra, U. Iriarte-Velasco, E.A. Cepeda et al., Preparation of carbon-based adsorbents from the pyrolysis of sewage sludge with CO2. Investigation of the acid washing procedure. Desalin. Water Treat. 57, 16053–16065 (2016). https://doi.org/10.1080/19443994.2015.1075428

    Article  CAS  Google Scholar 

  44. M. Zulfajri, Y.-T. Kao, G.G. Huang, Retrieve of residual waste of carbon dots derived from straw mushroom as a hydrochar for the removal of organic dyes from aqueous solutions. Sustain. Chem. Pharm. 22, 100469 (2021). https://doi.org/10.1016/j.scp.2021.100469

    Article  CAS  Google Scholar 

  45. H. Kumar, K. Bhardwaj, R. Sharma et al., Fruit and vegetable peels: utilization of high value horticultural waste in novel industrial applications. Molecules 25, 1–21 (2020). https://doi.org/10.3390/molecules25122812

    Article  CAS  Google Scholar 

  46. Y. Zhou, Y. Liu, Y. Li et al., Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Adv. 8, 23657–23662 (2018). https://doi.org/10.1039/c8ra03272f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledge with thanks to the Department of Chemistry, AMU, Aligarh, for the financial support to carry out this work.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author information

Authors and Affiliations

Authors

Contributions

HSS: Conceptualization, methodology, writing—original draft preparation, investigation. Qurtulen: Data curation, reviewing. AA: Supervision, reviewing, and editing. SG: Editing. UM: Editing.

Corresponding author

Correspondence to Anees Ahmad.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahraki, H.S., Ahmad, A., Qurtulen et al. Carbon Dots from Natural‐Product: Applications as Adsorbent and Sensing of Fe3+ Ions. J Inorg Organomet Polym 33, 3164–3177 (2023). https://doi.org/10.1007/s10904-023-02707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02707-8

Keywords

Navigation