Skip to main content
Log in

A Novel Conductometric Micro-sensor for Methanol Detection Based on Chitosan/Zinc Sulfide-Nanoparticles Composite Obtained by Green Synthesis

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Methanol (MeOH) is largely used in industry but it is poisonous when ingested. A new microconductometric transducer is proposed for the detection of methanol vapor. The sensitive part of this methanol microsensor is prepared by the encapsulation of zinc sulfide (ZnS) nanoparticles (NPs) in chitosan. ZnS NPs were prepared through an aqueous colloidal route, Artemisia Herba Alba (AHA) plant extract being used as a capping agent. ZnS AHA NPs presents an average nanocrystal size of 3.93 nm with a cubic zinc blende structure. The ZnS AHA NPs were well dispersed in an electrodeposited chitosan film on interdigitated electrodes, for conductometric measurements. The ethanol, methanol and acetone gas-sensing responses of the films were measured at room temperature. The sensors’ response time (tRec) for methanol is from 11 to 25 s from lower to higher concentrations. The limit of detection for methanol is 1400 ppm in the gas phase. The methanol sensor presents 3.8 times lower sensitivity for ethanol and 30 times lower sensitivity for acetone. The shelf life of the methanol sensor is one month.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.A. Kruse, Methanol poisoning. Intens. Care Med. 18, 391–397 (1992). https://doi.org/10.1007/BF01694340

    Article  CAS  Google Scholar 

  2. K.E. Hovda, O.H. Hunderi, A. Tafjord, O. Dunlop, N. Rudberg, D. Jacobsen, Methanol outbreak in Norway 2002–2004: epidemiology, clinical features and prognostic signs. J. Intern. Med. 258, 181–190 (2005). https://doi.org/10.1111/j.1365-2796.2005.01521.x

    Article  CAS  PubMed  Google Scholar 

  3. F. Schorn, J.L. Breuer, R.C. Samsun, T. Schnorbus, B. Heuser, R. Peters, D. Stolten, Methanol as a renewable energy carrier: an assessment of production and transportation costs for selected global locations. Adv. Appl. Energy. 3, 100050 (2021). https://doi.org/10.1016/j.adapen.2021.100050

    Article  CAS  Google Scholar 

  4. J.A. Joseph, S. Akkermans, J.F.M. Van Impe, Processing method for the quantification of methanol and ethanol from bioreactor samples using gas chromatography-flame ionization detection. ACS Omega 7, 24121–24133 (2022). https://doi.org/10.1021/acsomega.2c00055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. K. Sharma, S.P. Sharma, S. Lahiri, Novel method for identification and quantification of methanol and ethanol in alcoholic beverages by gas chromatography-fourier transform infrared spectroscopy and horizontal attenuated total reflectancefourier transform infrared spectroscopy. J. AOAC Int. 92, 518–526 (2009). https://doi.org/10.1093/jaoac/92.2.518

    Article  CAS  PubMed  Google Scholar 

  6. P. Maksimov, A. Laari, V. Ruuskanen, T. Koiranen, J. Ahola, Gas phase methanol synthesis with Raman spectroscopy for gas composition monitoring. RSC Adv. 10, 23690–23701 (2020). https://doi.org/10.1039/D0RA04455E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. S. Kumar, G. Sharma, V. Singh, Modelling of surface plasmon resonance sensor for detection of mass concentration of ethanol and methanol in a binary mixture. Infrared Phys. Technol. 67, 190–196 (2014). https://doi.org/10.1016/j.infrared.2014.07.021

    Article  CAS  Google Scholar 

  8. K.W. Khalid, A.A. Abadi, F.A. Dawood, Synthesis of SnO nanowires on quartz and silicon substrates for gas sensors. J. Inorg. Organomet. Polym. Mater. 30, 3294–3304 (2020). https://doi.org/10.1007/s10904-020-01617-3

    Article  CAS  Google Scholar 

  9. V. Shah, J. Bhaliya, G.M. Patel, P. Joshi, Room-temperature chemiresistive gas sensing of SnO nanowires: a review. J. Inorg. Organomet. Polym. Mater. 32, 741–772 (2022). https://doi.org/10.1007/s10904-021-02198-5

    Article  CAS  Google Scholar 

  10. S.T. Hezarjaribi, S. Nasirian, An enhanced fast ethanolsensor based on zinc oxide/nickel oxide nanocompositein dynamic situations. J. Inorg. Organomet. Polym. Mater. 30, 4072–4081 (2020). https://doi.org/10.1007/s10904-020-01556-z

    Article  CAS  Google Scholar 

  11. M. Shahabi, H. Raissi, Assessment of DFT calculations and molecular dynamics simulation on the application of zinc oxide nanotube as hydrogen cyanide gas sensor. J. Inorg. Organomet. Polym. Mater. 27, 1878–1885 (2017). https://doi.org/10.1007/s10904-017-0656-z

    Article  CAS  Google Scholar 

  12. P.S. Kolhe, P.S. Shirke, N. Maiti et al., Facile hydrothermal synthesis of WO nanoconifer thin film: multifunctional behavior for gas sensing and field emission applications. J. Inorg. Organomet. Polym. Mater. 29, 41–48 (2019). https://doi.org/10.1007/s10904-018-0962-0

    Article  CAS  Google Scholar 

  13. A. Gaiardo, B. Fabbri, V. Guidi, P. Bellutti, A. Giberti, S. Gherardi, L. Vanzetti, C. Malagù, G. Zonta, Metal sulfides as sensing materials for chemoresistive gas sensors. Sensors 16, 296 (2016). https://doi.org/10.3390/s16030296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Souissi, N. Bouguila, B. Bouricha, C. Vazquez-Vazquez, M. Bendahan, A. Labidi, Thickness effect on VOC sensing properties of sprayed In2S3 films. RSC Adv. 10, 18841 (2020). https://doi.org/10.1039/d0ra01573c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Shan, Z. Fu, M. Ma, Z. Liu, Z. Xue, J. Xu, F. Zhang, Y. Li, Facile chemical bath synthesis of sns nanosheets and their ethanol sensing properties. Sensors 19, 2581 (2019). https://doi.org/10.3390/s19112581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. R.K. Mishra, G.J. Choi, H.J. Choi, J.S. Gwag, ZnS quantum dot based acetone sensor for monitoring health-hazardous gases in indoor/outdoor environment. Micromachines 12, 598 (2021). https://doi.org/10.3390/mi12060598

    Article  PubMed  PubMed Central  Google Scholar 

  17. L. Zhang, R. Dong, Z. Zhu, S. Wang, Au nanoparticles decorated ZnS hollow spheres for highly improved gas sensor performances. Sens. Actuators B 245, 112–121 (2017). https://doi.org/10.1016/j.snb.2017.01.179

    Article  CAS  Google Scholar 

  18. L. Chang, X. He, L. Chen, Y. Zhang, Mercaptophenylboronic acid-capped Mn-doped ZnS quantum dots for highly selective and sensitive fluorescence detection of glycoproteins. Sens. Actuators B 243, 72–77 (2017). https://doi.org/10.1016/j.snb.2016.11.121

    Article  CAS  Google Scholar 

  19. Z. Bujňáková, E. Dutková, M. Kello et al., Mechanochemistry of chitosan-coated zinc sulfide (ZnS) nanocrystals for bio-imaging applications. Nanoscale Res. Lett. 12, 328 (2017). https://doi.org/10.1186/s11671-017-2103-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. P.A. Ajibade, A.E. Oluwalana, B.M. Sikakane, M. Singh, Structural, photocatalytic and anticancer studies of hexadecylamine capped ZnS nanoparticles. Chem. Phys. Lett. 755, 137813 (2020). https://doi.org/10.1016/j.cplett.2020.137813

    Article  CAS  Google Scholar 

  21. D. Gao, L. Wang, X. Su et al., The role of applied magnetic field in Co-doped ZnS thin films fabricated by pulsed laser deposition. Opt. Mater. 114, 110877 (2021). https://doi.org/10.1016/j.optmat.2021.110877

    Article  CAS  Google Scholar 

  22. Y. Piña-Pérez, O. Aguilar-Martínez, P. Acevedo-Peña et al., Novel ZnS-ZnO composite synthesized by the solvothermal method through the partial sulfidation of ZnO for H2 production without sacrificial agent. Appl. Catal. B 230, 125–134 (2018). https://doi.org/10.1016/j.apcatb.2018.02.047

    Article  CAS  Google Scholar 

  23. Uzun Çam, Ş., Seri̇n, T., Yazıcı, A.N.: Effect of Sn doping concentration on structural, optical and electrical properties of ZnS/p-Si (111) diodes fabricated by sol-gel dip-coating method. Mater Sci Semicond Process 127, 105693 (2021). https://doi.org/10.1016/j.mssp.2021.105693

  24. M. Xin, L.M. Liao, F. Han, Optical properties of ZnS: Ce nanocrystals prepared by hydrothermal method. J Lumin 238, 118074 (2021). doi: https://doi.org/10.1016/j.jlumin.2021.118074

  25. J.S. Bradley, B. Tesche, W. Busser et al., Surface spectroscopic study of the stabilization mechanism for shape-selectively synthesized nanostructured transition metal colloids. J. Am. Chem. Soc. 122, 4631–4636 (2000). https://doi.org/10.1021/ja992409y

    Article  CAS  Google Scholar 

  26. G. Hosseinzadeh, A. Maghari, S.M.F. Farniya et al., Interaction of insulin with colloidal ZnS quantum dots functionalized by various surface capping agents. Mater. Sci. Eng. C 77, 836–845 (2017). https://doi.org/10.1016/j.msec.2017.04.018

    Article  CAS  Google Scholar 

  27. N. Mohamed, M. Amir, Z. Zaaboub et al., Effect of temperature and etching under light irradiation on the band edge emission of β-mercaptoethanol-capped CdS colloidal nanocrystals. J. Mater. Sci.: Mater. Electron. 31, 2416–2427 (2020). https://doi.org/10.1007/s10854-019-02777-w

    Article  CAS  Google Scholar 

  28. N. Brahim, M. Poggi, J.C. Lambry et al., Density of grafted chains in thioglycerol-capped CdS quantum dots determines their interaction with aluminum(III) in water. Inorg. Chem. 57, 4979–4988 (2018). https://doi.org/10.1021/acs.inorgchem.7b03254

    Article  CAS  PubMed  Google Scholar 

  29. N. Brahim, N. Mohamed, M. Poggi et al., Interaction of L-cysteine functionalized CdSe quantum dots with metallic cations and selective binding of cobalt in water probed by fluorescence. Sens. Actuators B 243, 489–499 (2016). https://doi.org/10.1016/j.snb.2016.12.003

    Article  CAS  Google Scholar 

  30. Y. Yu, L. Xu, J. Chen, H. Gao, S. Wang, J. Fang, S. Xu, Hydrothermal synthesis of GSH–TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids. Surf. B 95, 247–253 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.011

    Article  CAS  Google Scholar 

  31. S. Ouni, N. Mohamed, M. Bouzidi et al., High impact of thiol capped ZnS nanocrystals on the degradation of single and binary aqueous solutions of industrial azo dyes under sunlight. J. Environ. Chem. Eng. 9, 5915 (2021). https://doi.org/10.1016/j.jece.2021.105915

    Article  CAS  Google Scholar 

  32. M. Adoni, M. Yadam, S. Gaddam et al., Antimicrobial, antioxidant, and dye degradation properties of biosynthesized silver nanoparticles from Artemisia Annua L. Lett. Appl. NanoBioSci. 10, 1981–1992 (2021). https://doi.org/10.33263/LIANBS101.19811992

    Article  Google Scholar 

  33. S. Kannan, N.P. Subiramaniyam, M. Sathishkumar, A novel green synthesis approach for improved photocatalytic activity and antibacterial properties of zinc sulfide nanoparticles using plant extract of Acalypha indica and Tridax procumbens. J. Mater. Sci. Mater. Electron. 31, 9846–9859 (2020). https://doi.org/10.1007/s10854-020-03529-x

    Article  CAS  Google Scholar 

  34. M. Biruntha, J. Archana, K. Kavitha et al., Green synthesis of zinc sulfide nanoparticles using Abrus precatorius and its effect on coelomic fluid protein profile and enzymatic activity of the earthworm, Eudrilus eugeniae. BioNanoScience 10, 149–156 (2020). https://doi.org/10.1007/s12668-019-00694-0

    Article  Google Scholar 

  35. H.R. Rajabi, F. Sajadiasl, H. Karimi, Z.M. Alvand, Green synthesis of zinc sulfide nanophotocatalysts using aqueous extract of Ficus Johannis plant for efficient photodegradation of some pollutants. J. Mater. Res. Technol. 9, 15638–15647 (2020). https://doi.org/10.1016/j.jmrt.2020.11.017

    Article  CAS  Google Scholar 

  36. S.C. Tudu, J. Kusz, M. Zubko, A. Bhattacharjee, Structural, morphological and optical characterization of green synthesized ZnS nanoparticles using Azadirachta Indica (Neem) leaf extract. Int. J. Nano Dimens. 11, 99–111 (2020)

    CAS  Google Scholar 

  37. R. Belhattab, L. Amor, J.G. Barroso et al., Essential oil from Artemisia herba-alba Asso grown wild in Algeria: variability assessment and comparison with an updated literature survey. Arab. J. Chem. 7, 243–251 (2014). https://doi.org/10.1016/j.arabjc.2012.04.042

    Article  CAS  Google Scholar 

  38. M. Mojarrab, A. Delazar, S. Esnaashari, F.H. Afshar, Chemical composition and general toxicity of essential oils extracted from the aerial parts of Artemisia armeniaca Lam. and A. incana (L.) Druce growing in Iran. Res. Pharm. Sci. 8, 65–69 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. A. Asdadi, A. Hamdouch, S. Gharby, L.M.I. Hassani, Journal of Analytical Sciences and Applied Biotechnology 2, 2 (2020). https://doi.org/10.48402/IMIST.PRSM/jasab-v2i2.21589

    Article  Google Scholar 

  40. K.S. Bora, A. Sharma, The Genus Artemisia: a comprehensive review. Pharm. Biol. 49, 101–109 (2011). https://doi.org/10.3109/13880209.2010.497815

    Article  PubMed  Google Scholar 

  41. Y. Aniya, M. Shimabukuro, M. Shimoji et al., Antioxidant and hepatoprotective actions of the medicinal herb Artemisia campestris from the Okinawa Islands. Biol. Pharm. Bull. 23, 309–312 (2000). https://doi.org/10.1248/bpb.23.309

    Article  CAS  PubMed  Google Scholar 

  42. M.J. Abad, L.M. Bedoya, L. Apaza, P. Bermejo, The Artemisia L. Genus: a review of bioactive essential oils. Molecules 17, 2542–2566 (2012). https://doi.org/10.3390/molecules17032542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. T. El-lamey, A. Kamel, E. Elsharkawy, Volatile oils content of some species of Artemisia growing under different environmental conditions and its effect on germination of seeds of some plants. IOSR J. Agric. Vet. Sci. 11, 83 (2018). https://doi.org/10.9790/2380-1112028393

    Article  Google Scholar 

  44. P. Parameswari, R. Devika, P. Vijayaraghavan, In vitro anti-inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J. Biol. Sci. 26, 460 (2019). https://doi.org/10.1016/j.sjbs.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  45. H. Dai, N. Feng, J. Li et al., Chemiresistive humidity sensor based on chitosan/zinc oxide/single-walled carbon nanotube composite film. Sens. Actuators B 283, 786–792 (2019). https://doi.org/10.1016/j.snb.2018.12.056

    Article  CAS  Google Scholar 

  46. I. Aranaz, A.R. Alcántara, M.C. Civera et al., Chitosan: an overview of its properties and applications. Polymers 13, 3256 (2021). https://doi.org/10.3390/polym13193256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. F. Zouaoui, S. Bourouina-Bacha, M. Bourouina et al., Electrochemical sensors based on molecularly imprinted chitosan: A review. TrAC Trends Anal Chem 130, 115982 (2020). https://doi.org/10.1016/j.trac.2020.115982

    Article  CAS  Google Scholar 

  48. Y. Jiang, J. Wu, Recent development in chitosan nanocomposites for surface-based biosensor applications. Electrophoresis 40, 2084–2097 (2019). https://doi.org/10.1002/elps.201900066

    Article  CAS  PubMed  Google Scholar 

  49. F.I.M. Ali, S.T. Mahmoud, F. Awwad et al., Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film. Carbohydr. Polym. 236, 6064 (2020). https://doi.org/10.1016/j.carbpol.2020.116064

    Article  CAS  Google Scholar 

  50. N.L. Lukman Hekiem, A.A. Md Ralib, M.A. Mohd Hatta et al., Effect of chitosan dissolved in different acetic acid concentration towards VOC sensing performance of quartz crystal microbalance overlay with chitosan. Mater. Lett. 291, 9524 (2021). https://doi.org/10.1016/j.matlet.2021.129524

    Article  CAS  Google Scholar 

  51. A. Madaci, G. Raffin, M. Hangouet et al., A microconductometric ethanol sensor prepared through encapsulation of alcohol dehydrogenase in chitosan: application to the determination of alcoholic content in headspace above beverages. J. Mater. Sci.: Mater. Electron. 32, 17752–17763 (2021). https://doi.org/10.1007/s10854-021-06311-9

    Article  CAS  Google Scholar 

  52. D. Amaranatha Reddy, C. Liu, R.P. Vijayalakshmi, B.K. Reddy, Effect of Al doping on the structural, optical and photoluminescence properties of ZnS nanoparticles. J. Alloys Compd. 582, 257–264 (2014). https://doi.org/10.1016/j.jallcom.2013.08.051

    Article  CAS  Google Scholar 

  53. H. Asoufi, T. Al-Antary, A. Awwad, Biosynthesis and characterization of iron sulfide (FeS) nanoparticles and evaluation their aphicidal activity on the green peach aphid myzus persicae (Homoptera: aphididae). Fresenius Environ. Bull. 27, 7767–7775 (2018)

    CAS  Google Scholar 

  54. Q.F. Nafa, S.M. Hussin, W.F. Hamadi, Characterization of some active organic compound from Cold and Hot aqueous solvent and Study their Antibiotic of Artemisia herba-alba Asso plant oil. Egypt J. Chem. 64, 6691–6709 (2021). https://doi.org/10.21608/ejchem.2021.72074.3587

    Article  Google Scholar 

  55. U.S. Senapati, D. Sarkar, Structural, spectral and electrical properties of green synthesized ZnS nanoparticles using Elaeocarpus floribundus leaf extract. J. Mater. Sci.: Mater. Electron. 26, 5783–5791 (2015). https://doi.org/10.1007/s10854-015-3137-6

    Article  CAS  Google Scholar 

  56. Y. Yu, L. Xu, J. Chen et al., Hydrothermal synthesis of GSH–TGA co-capped CdTe quantum dots and their application in labeling colorectal cancer cells. Colloids Surf. B 95, 247–253 (2012). https://doi.org/10.1016/j.colsurfb.2012.03.011

    Article  CAS  Google Scholar 

  57. M. Jothibas, C. Manoharan, S. Johnson Jeyakumar et al., Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles. Sol. Energy 159, 434–443 (2018). https://doi.org/10.1016/j.solener.2017.10.055

    Article  CAS  Google Scholar 

  58. B. Poornaprakash, U. Chalapathi, Y. Suh et al., Terbium-doped ZnS quantum dots: structural, morphological, optical, photoluminescence, and photocatalytic properties. Ceram. Int. 44, 11724–11729 (2018). https://doi.org/10.1016/j.ceramint.2018.03.250

    Article  Google Scholar 

  59. S. Ouni, N.B.H. Mohamed, N. Chaaben et al., Fast and effective catalytic degradation of an organic dye by eco-friendly capped ZnS and Mn-doped ZnS nanocrystals. Environ. Sci. Pollut. Res. 29, 33474–33494 (2022). https://doi.org/10.1007/s11356-021-17860-1

    Article  CAS  Google Scholar 

  60. V. Mote, Y. Purushotham, B. Dole, Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. J. Theor. Appl. Phys. 6, 6 (2012). https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  61. H. Matsumoto, T. Sakata, H. Mori, H. Yoneyama, Preparation of monodisperse CdS nanocrystals by size selective photocorrosion. J. Phys. Chem. 100, 13781–13785 (1996). https://doi.org/10.1021/jp960834x

    Article  CAS  Google Scholar 

  62. A. Iqbal, U. Saidu, F. Adam, S. Sreekantan, N. Jasni, M.N. Ahmad, The effects of zinc oxide (ZnO) quantum dots (QDs) embedment on the physicochemical properties and photocatalytic activity of titanium dioxide (TiO2) nanoparticles. JPS 32, 71 (2021). https://doi.org/10.21315/jps2021.32.2.6

    Article  CAS  Google Scholar 

  63. N. Ben Brahim, M. Poggi, N.B. Haj Mohamed et al., Synthesis, characterization and spectral temperature-dependence of thioglycerol-CdSe nanocrystals. J. Lumin. 177, 402–408 (2016). https://doi.org/10.1016/j.jlumin.2016.05.026

    Article  CAS  Google Scholar 

  64. J.R. Snider, G.A. Dawson, Tropospheric light alcohols, carbonyls, and acetonitrile: Concentrations in the southwestern United States and Henry’s Law data. J. Geophys. Res. Atmos. 90, 3797–3805 (1985). https://doi.org/10.1029/JD090iD02p03797

    Article  CAS  Google Scholar 

  65. Sander, R.: Compilation of Henry’s Law Constants for Inorganic and Organic Species of Potential Importance in Environmental Chemistry, version 3, 8 Apr 1999 http://www.mpch-mainz.mpg.de∼sander\res\henry.html. Errata (collected from the above web site 4 June 2003) Wel. H - PHA KH H - PHA Thanks J C Wheel

  66. N. Lavanya, S.G. Leonardi, S. Marini et al., MgNi2O3 nanoparticles as novel and versatile sensing material for non-enzymatic electrochemical sensing of glucose and conductometric determination of acetone. J. Alloys Compd. 817, 152787 (2020). https://doi.org/10.1016/j.jallcom.2019.152787

    Article  CAS  Google Scholar 

  67. R. Krishna, J.M. Van Baten, Water/alcohol mixture adsorption in hydrophobic materials: enhanced water ingress caused by hydrogen bonding. ACS Omega 5, 28393–28402 (2020). https://doi.org/10.1021/acsomega.0c04491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. C.F. Fong, C.L. Dai, C.C. Wu, Fabrication and characterization of a micro methanol sensor using the CMOS-MEMS technique. Sensors 15, 27047–27059 (2015). https://doi.org/10.3390/s151027047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Q. Liu, J.R. Kirchhoff, Amperometric detection of methanol with a methanol dehydrogenase modified electrode sensor. J. Electroanal. Chem. 601, 125–131 (2007). https://doi.org/10.1016/j.jelechem.2006.10.039

    Article  CAS  Google Scholar 

  70. J. Van den Broek, S. Abegg, S.E. Pratsinis, A.T. Güntner, Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat. Commun. 10, 4220 (2019). https://doi.org/10.1038/s41467-019-12223-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. K. Phasuksom, W. Prissanaroon-Ouajai, A. Sirivat, A highly responsive methanol sensor based on graphene oxide/polyindole composites. RSC Adv. 10, 15206–15220 (2020). https://doi.org/10.1039/D0RA00158A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Y. Li, D. Deng, X. Xing et al., A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B 237, 133–141 (2016). https://doi.org/10.1016/j.snb.2016.06.088

    Article  CAS  Google Scholar 

  73. B. Mandal, Aaryashree, R. Singh, S. Mukherjee, Highly Selective and Sensitive Methanol Sensor Using Rose-Like ZnO Microcube and MoO3 Micrograss-Based Composite. IEEE Sens J 18, 2659–2666 (2018). doi: https://doi.org/10.1109/JSEN.2018.2803682

  74. D. Acharyya, S. Acharyya, K. Huang et al., Highly sensitive ppb level methanol sensor by tuning C: O ratio of rGO-TiO2 nanotube hybrid structure. IEEE Trans. Nanotechnol. 16, 1122–1128 (2017). https://doi.org/10.1109/TNANO.2017.2764124

    Article  CAS  Google Scholar 

  75. K. Phasuksom, W. Prissanaroon-Ouajai, A. Sirivat, Electrical conductivity response of methanol sensor based on conductive polyindole. Sens. Actuators B 262, 1013–1023 (2018). https://doi.org/10.1016/j.snb.2018.02.088

    Article  CAS  Google Scholar 

  76. I. Musa, G. Raffin, M. Hangouet et al., Electrospun PVC-nickel phthalocyanine composite nanofiber based conductometric methanol microsensor. Microchem. J. 182, 107899 (2022). https://doi.org/10.1016/j.microc.2022.107899

    Article  CAS  Google Scholar 

  77. I. Musa, G. Raffin, M. Hangouet et al., Development of a chitosan/nickel phthalocyanine composite based conductometric micro-sensor for methanol detection. Electroanalysis 34, 1338–1347 (2022). https://doi.org/10.1002/elan.202100707

    Article  CAS  Google Scholar 

  78. A.A. Athawale, S.V. Bhagwat, P.P. Katre, Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sens. Actuators B 114, 263–267 (2006). https://doi.org/10.1016/j.snb.2005.05.009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Region Auvergne Rhone-Alpes is acknowledged for the Pack Ambition International Project, EMBAI #246413. The CNRS is acknowledged for the IRP NARES. Campus France is acknowledged for the financial support through PHC Maghreb EMBISALIM. S. OUNI thanks the University of Monastir for providing the scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Author Contributions: Conceptualization, Naim Bel Haj Mohamed; investigation, Sabri Ouni, Anis Madaci; methodology, Abdelhamid Elaissari; writing—original draft preparation, Mohamed Haouari; writing—review and editing, Nicole Jaffrezic-Renault; funding acquisition, Abdelhamid Errachid. All authors reviewed the manuscript.

Corresponding author

Correspondence to Nicole Jaffrezic-Renault.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouni, S., Madaci, A., Haouari, M. et al. A Novel Conductometric Micro-sensor for Methanol Detection Based on Chitosan/Zinc Sulfide-Nanoparticles Composite Obtained by Green Synthesis. J Inorg Organomet Polym 33, 2574–2585 (2023). https://doi.org/10.1007/s10904-023-02696-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02696-8

Keywords

Navigation