Skip to main content
Log in

Greenish–Yellow Luminescence in Vanadate Garnet Phosphors: Structural Characterization, Energy Transfer and Judd–Ofelt Analysis of Dy3+ Doped Ca2LiMg2V3O12

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Undoped and the Dy3+ doped garnet type vanadate Ca2LiMg2V3O12 (CLMV) with various concentrations of the Dy3+ (0.01–0.09) were synthesized via solid-state reaction. The Powder XRD results confirm the phase formation of the samples. The SEM and EDAX with elemental mapping confirmed the morphological properties and elements present in the material respectively. The band gap energy of the CLMV and CLMV:0.07Dy3+ was calculated from the DRS measurements. The photoluminescence properties of the pure CLMV and the CLMV: xDy3+(x = 0.01–0.09) were studied under excitation at 347 nm and the emission at 577 nm. Also, the PL emission was taken for the dominated characteristic peak of the Dy3+ under the excitation at 387 nm. Lifetime decay analysis and the CIE color coordinates are also provided. The Judd–Ofelt intensity parameters were calculated from the excitation spectra and the radiative properties of the CLMV:0.07Dy3+ were explained. These results indicate that this phosphor is suitable for solid-state lighting applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.J. Xie, N. Hirosaki, T. Suehiro, F.F. Xu, M. Mitomo, A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes. Chem. Mater. 18, 5578–5583 (2006). https://doi.org/10.1021/cm061010n

    Article  CAS  Google Scholar 

  2. X. Min, M. Fang, Z. Huang, Y.G. Liu, C. Tang, X. Wu, Synthesis and optical properties of Pr3+-doped LaMgAl11O19—a novel blue converting yellow phosphor for white light emitting diodes. Ceram. Int. 41, 4238–4242 (2015). https://doi.org/10.1016/j.ceramint.2014.11.070

    Article  CAS  Google Scholar 

  3. C.C. Lin, R.S. Liu, Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2, 1268–1277 (2011). https://doi.org/10.1021/jz2002452

    Article  CAS  PubMed  Google Scholar 

  4. A. De Almeida, B. Santos, B. Paolo, M. Quicheron, Solid state lighting review–Potential and challenges in Europe. Renew. Sustain. Energy Rev. 34, 30–48 (2014). https://doi.org/10.1016/j.rser.2014.02.029

    Article  Google Scholar 

  5. G. Blasse, B.C. Grabmaier, A general introduction to luminescent materials. In J. Lumin. 1994 (1–9). Springer, Berlin. https://doi.org/10.1007/978-3-642-79017-1_1

  6. S. Liang, M. Shang, H. Lian, K. Li, Y. Zhang, J. Lin, An efficient rare-earth free deep red emitting phosphor for improving the color rendering of white light-emitting diodes. J. Mater. Chem. C 5, 2927–2935 (2017). https://doi.org/10.1039/C6TC05499D

    Article  CAS  Google Scholar 

  7. H. Guo, B. Devakumar, R. Vijayakumar, P. Du, X. Huang, A novel Sm3+ singly doped LiCa3ZnV3O12 phosphor: a potential luminescent material for multifunctional applications. RSC Adv. 8, 33403–33413 (2018). https://doi.org/10.1039/C8RA07329E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. X. Huang, H. Guo, LiCa3MgV3O12: Sm3+: a new high-efficiency white-emitting phosphor. Ceram. Int. 44, 10340–10344 (2018). https://doi.org/10.1016/j.ceramint.2018.03.043

    Article  CAS  Google Scholar 

  9. R. Madhuri, S. Ganesanpotti, Crystal structure, phonon modes, and bond characteristics of AgPb2B2V3O12 (B=Mg, Zn) microwave ceramics. J. Am. Ceram. Soc. 103, 3157–3167 (2020). https://doi.org/10.1111/jace.16991

    Article  CAS  Google Scholar 

  10. Q. Su, Z. Pei, L. Chi, H. Zhang, Z. Zhang, F. Zou, The yellow-to-blue intensity ratio (Y/B) of Dy3+ emission. J. Alloys Compd. 192, 25–27 (1993). https://doi.org/10.1016/0925-8388(93)90174-L

    Article  CAS  Google Scholar 

  11. D.D. Ramteke, R.S. Gedam, H.C. Swart, Physical and optical properties of lithium borosilicate glasses doped with Dy3+ ions. Physica B 535, 194–197 (2018). https://doi.org/10.1016/j.physb.2017.07.035

    Article  CAS  Google Scholar 

  12. B. Yan, X.Q. Su, Chemical co-precipitation synthesis of luminescent BixY1− Xvo4: RE (RE= Eu3+, Dy3+, Er3+) phosphors from hybrid precursors. J. Non-Cryst. Solids. 352, 3275–3279 (2006). https://doi.org/10.1016/j.jnoncrysol.2006.05.023

    Article  CAS  Google Scholar 

  13. F.C. Hawthorne, C. Calvo, The crystal chemistry of the M+ VO3 (M+ = Li, Na, K, NH4, Tl, Rb, and Cs) pyroxenes. J. Solid State Chem. 22, 157–170 (1977). https://doi.org/10.1016/0022-4596(77)90033-0

    Article  CAS  Google Scholar 

  14. P.Y. Zavalij, M.S. Whittingham, Structural chemistry of vanadium oxides with open frameworks. Acta. Crystallogr. B 55, 627–663 (1999). https://doi.org/10.1107/S0108768199004000

    Article  CAS  PubMed  Google Scholar 

  15. M. Yu, J. Lin, Z. Wang, J. Fu, S. Wang, A. Zhang, Y.C. Han, Fabrication, patterning, and optical properties of nanocrystalline YVO4: a (A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography. Chem. Mater. 14, 2224–2231 (2002). https://doi.org/10.1021/cm011663y

    Article  CAS  Google Scholar 

  16. S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid state lighting; the system BixLn1− xVO4; Eu3+/Sm3+ (Ln= Y, Gd). Solid State Commun. 131, 65–69 (2004). https://doi.org/10.1016/j.cplett.2003.12.130

    Article  CAS  Google Scholar 

  17. K.S. Sohn, I.W. Zeon, H. Chang, S.K. Lee, H.D. Park, Combinatorial search for new red phosphors of high efficiency at VUV excitation based on the YRO4 (R= As, Nb, P, V) system. Chem. Mater. 14, 2140–2148 (2002). https://doi.org/10.1021/cm0109701

    Article  CAS  Google Scholar 

  18. J.Y. Choe, D. Ravichandran, S.M. Blomquist, D.C. Morton, K.W. Kirchner, M.H. Ervin, U. Lee, Alkoxy sol-gel derived Y3−xAl5O12: Tb x thin films as efficient cathodoluminescent phosphors. Appl. Phys. Lett. 78, 3800–3802 (2001). https://doi.org/10.1063/1.1378313

    Article  CAS  Google Scholar 

  19. J.S. Bae, S.S. Park, T.E. Hong, J.P. Kim, J.H. Yoon, E.D. Jeong, M.S. Won, J.H. Jeong, Optical and surface analysis of lithium incorporated GdVO4: Eu3+ phosphor powders. Curr. Appl. Phys. 9, S241–S244 (2009). https://doi.org/10.1016/j.cap.2009.01.025

    Article  Google Scholar 

  20. S. Choi, Y.M. Moon, K. Kim, H.K. Jung, S. Nahm, Luminescent properties of a novel red-emitting phosphor: Eu3+-activated Ca3Sr3 (VO4)4. J. Lumin. 129, 988–990 (2009). https://doi.org/10.1016/j.jlumin.2009.04.010

    Article  CAS  Google Scholar 

  21. A.A. Setlur, H.A. Comanzo, A.M. Srivastava, W.W. Beers, Spectroscopic evaluation of a white light phosphor for UV-LEDs—Ca2NaMg2V3O12: Eu3+. J. Electrochem. Soc. 152, H205 (2005). https://doi.org/10.1149/1.2077328

    Article  CAS  Google Scholar 

  22. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962). https://doi.org/10.1103/PhysRev.127.750

    Article  CAS  Google Scholar 

  23. G.S. Ofelt, Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962). https://doi.org/10.1063/1.1701366

    Article  CAS  Google Scholar 

  24. C.K. Jayasankar, E. Rukmini, Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses. Opt. Mater. 8, 193–205 (1997)

    Article  CAS  Google Scholar 

  25. W.T. Carnall, H. Crosswhite, H.M. Crosswhite, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3 (No. ANL-78-XX) (1978)

  26. R.C. Powell, Physics of Solid-State Laser Materials, vol. 1 (Springer, New York, 1998)

    Book  Google Scholar 

  27. W.T. Carnall, P.R. Fields, K. Rajnak, Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+. J. Chem. Phys. 49, 4412–4423 (1968). https://doi.org/10.1063/1.1669892

    Article  CAS  Google Scholar 

  28. V. Venkataramu, P. Babu, C.K. Jayasankar, T. Trӧster, W. Sievers, G. Wortmann, Opt. Mater. 29, 1429 (2007)

    Article  Google Scholar 

  29. S.K. Sharma, S. Dutta, S. Som, P.S. Mandal, CaMoO4: Dy3+, K+ near white light emitting phosphor: structural, optical and dielectric properties. J. Mater. Sci. Technol. 29, 633–638 (2013)

    Article  CAS  Google Scholar 

  30. X. Zhang, Z. Zhu, Z. Guo, Z. Sun, L. Zhou, Z.C. Wu, Synthesis, structure and luminescent properties of Eu3+ doped Ca3LiMgV3O12color-tunable phosphor. Ceram. Int. 44, 16514–16521 (2018). https://doi.org/10.1016/j.ceramint.2018.06.069

    Article  CAS  Google Scholar 

  31. E.A. Rathnakumari, M. Jayachandiran, S.M.M. Kennedy, Colortunable and energy transfer mechanism of Dy3+ and Eu3+ rare earth ions activated NaCaBi2(PO4)3eulytite type phosphor for NUV excitable warm white light emitting diodes. Optik 186, 221–230 (2019). https://doi.org/10.1016/j.ijleo.2019.04.048

    Article  CAS  Google Scholar 

  32. T. Krishnapriya, A. Jose, T.A. Jose, A.C. Saritha, C. Joseph, P.R. Biju, Investigation of the structural and photoluminescence properties of Eu3+ doped Na6CaP2O9 phosphors for solid state lighting. Mater. Res. Bull. 139, 111259 (2021). https://doi.org/10.1016/j.materresbull.2021.111259

    Article  CAS  Google Scholar 

  33. T.A. Safeera, E.I. Anila, Synthesis and characterization of ZnGa2O4: Eu3+ nanophosphor by wet chemical method. Scr. Mater. 143, 94–97 (2018). https://doi.org/10.1016/j.scriptamat.2017.09.021

    Article  CAS  Google Scholar 

  34. N. Kucuk, K. Bulcar, T. Dogan, J.G. Guinea, Z.G. Portakal, Y. Karabulut, M. Ayvacikli, A. Canimoglu, M.U.S.T.A.F.A. Topaksu, N. Can, Doping Sm3+ into ZnB2O4 phosphors and their structural and cathodoluminescence properties. J. Alloys Compd. 748, 245–251 (2018). https://doi.org/10.1016/j.jallcom.2018.03.153

    Article  CAS  Google Scholar 

  35. R. Yu, Y. Guo, L. Wang, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Characterizations and optical properties of orange–red emitting Sm3+-doped Y6WO12 phosphors. J. Lumin. 155, 317–321 (2014). https://doi.org/10.1016/j.jlumin.2014.06.041

    Article  CAS  Google Scholar 

  36. L.K. Bharat, S.K. Jeon, K.G. Krishna, J.S. Yu, Rare-earth free self-luminescent Ca2KZn2 (VO4)3 phosphors for intense white light-emitting diodes. Sci. Rep. 7(1), 1–9 (2017). https://doi.org/10.1038/srep42348

    Article  CAS  Google Scholar 

  37. S. Panda, P. Vinodkumar, U. Madhusoodanan, R. Ramachandran, V. Sridharan, B.S. Panigrahi, Synthesis, characterization and optical properties of BaCeO3: Eu-An efficient red phosphor for w-LED applications. J. Lumin. 214, 116538 (2019)

    Article  CAS  Google Scholar 

  38. S. Panda, P. Vinodkumar, U. Madhusoodanan, B.S. Panigrahi, Probing the optical properties and luminescence mechanism of a UV-emitting SrBPO5: Ce3+ phosphor. Luminescence 34(8), 887–894 (2019)

    Article  CAS  PubMed  Google Scholar 

  39. Q. Ning, B. Quan, Y. Shi, Effect of alkali metal ions on the spectra of CaZn2 (PO4)2: Sm3+ phosphor analyzed by JO theory. J. Lumin. 206, 498–508 (2019). https://doi.org/10.1016/j.jlumin.2018.10.101

    Article  CAS  Google Scholar 

  40. T. Krishnapriya, A. Jose, J.R. Jose, P.S. Vijoy, C. Joseph, P.R. Biju, Concentration dependent luminescence, energy transfer and Judd-Ofelt analysis of single composition white light emitting NaCa2Mg2V3O12: XEu3+ phosphor. Mater. Sci. Semicond. Proc. 143, 106498 (2022). https://doi.org/10.1016/j.mssp.2022.106498

    Article  CAS  Google Scholar 

  41. H. Guo, B. Devakumar, R. Vijayakumar, P. Du, X. Huang, A novel Sm3+ singly doped LiCa3 ZnV3O12 phosphor: a potential luminescent material for multifunctional applications. RSC Adv. 8(58), 33403–33413 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. Jeyakumaran, N.V. Bharathi, P. Sriramachandran, R. Shanmugavel, S. Ramaswamy, Synthesis and luminescence investigation of Eu3+ doped Ca2KZn2V3O12 phosphors: a potential material for WLEDs applications. J. Inorg. Organomet. Polym. Mater. 31, 674–682 (2021). https://doi.org/10.1007/s10904-020-01696-2

    Article  CAS  Google Scholar 

  43. T. Jeyakumaran, N.V. Bharathi, P. Sriramachandran, R. Shanmugavel, S. Ramaswamy, Facile synthesis, vibrational, optical and improved luminescence properties analysis of Ca2KZn2V3O12 phosphor. Mater. Res. Express 6, 116329 (2019). https://doi.org/10.1088/2053-1591/ab51b8

    Article  Google Scholar 

  44. S. Panda, P. Vinodkumar, S. Kumar, U. Madhusoodanan, N. Suriyamurthy, B.S. Panigrahi, Effect of gadolinium on europium luminescence and its in-situ valence conversion in SrBPO5 host. J. Lumin. 225, 117349 (2020). https://doi.org/10.1016/j.jlumin.2020.117349

    Article  CAS  Google Scholar 

  45. D.J. Jovanović, A. Chiappini, L. Zur, T.V. Gavrilović, T.N.L. Tran, A. Chiasera, A. Lukowiak, K. Smits, M.D. Dramićanin, M. Ferrari, Synthesis, structure and spectroscopic properties of luminescent GdVO4: Dy3+ and DyVO4 particles. Opt. Mater. 76, 308–316 (2018). https://doi.org/10.1016/j.optmat.2017.12.046

    Article  CAS  Google Scholar 

  46. A.R. Dhobale, M. Mohapatra, V. Natarajan, S.V. Godbole, Synthesis and photoluminescence investigations of the white light emitting phosphor, vanadate garnet, Ca2NaMg2V3O12 co-doped with Dy and Sm. J. Lumin. 132, 293–298 (2012). https://doi.org/10.1016/j.jlumin.2011.09.004

    Article  CAS  Google Scholar 

  47. J.B. Gruber, B. Zandi, U.V. Valiev, S.A. Rakhimov, Energy levels of Dy3+(4f 9) in orthoaluminate crystals. J. Appl. Phys. 94, 1030–1034 (2003). https://doi.org/10.1063/1.1581351

    Article  CAS  Google Scholar 

  48. X. Sun, J. Zhang, X. Zhang, S. Lu, X. Wang, A white light phosphor suitable for near ultraviolet excitation. J. Lumin. 122, 955–957 (2007). https://doi.org/10.1016/j.jlumin.2006.01.336

    Article  CAS  Google Scholar 

  49. D.L. Dexter, J.H. Schulman, Theory of concentration quenching in inorganic phosphors. J. Chem. Phys. 22, 1063–1070 (1954). https://doi.org/10.1063/1.1740265

    Article  CAS  Google Scholar 

  50. G. Annadurai, S. Masilla, M. Kennedy, V. Sivakumar, Synthesis of novel Dy3+ activated Ba2CaZn2Si6O17 phosphors for white light-emitting diodes. Luminescence 33, 521–527 (2018). https://doi.org/10.1002/bio.3441

    Article  CAS  PubMed  Google Scholar 

  51. T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda, T. Manabe, Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra. J. Phys. Chem. C 114, 5160–5167 (2010). https://doi.org/10.1021/jp910884c

    Article  CAS  Google Scholar 

  52. H. Xie, T. Tsuboi, W. Huang, Y. Huang, L. Qin, H.J. Seo, Luminescence and quantum efficiencies of Eu3+ -doped vanadate garnets. J. Am. Ceram. Soc. 97, 1434–1441 (2014). https://doi.org/10.1111/jace.12771

    Article  CAS  Google Scholar 

  53. T. Jeyakumaran, N. Venkatesh Bharathi, R. Shanmugavel, P. Sriramachandran, S. Ramaswamy, Structural, vibrational, optical and improved photoluminescence properties of Dy3+ doped Ca2KZn2V3O12 phosphors. J. Inorg. Organomet. Polym. Mater. 31, 695–703 (2021). https://doi.org/10.1007/s10904-020-01766-5

    Article  CAS  Google Scholar 

  54. G.P.R.L. Blasse, Energy transfer in oxidic phosphors. Phys. Lett. A 28, 444–445 (1968). https://doi.org/10.1016/0375-9601(68)90486-6

    Article  CAS  Google Scholar 

  55. D.L. Dexter, A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953). https://doi.org/10.1063/1.1699044

    Article  CAS  Google Scholar 

  56. T.W. Kuo, T.M. Chen, A green-emitting phosphor Sr3La(PO4)3: Ce3+, Tb3+ with efficient energy transfer for fluorescent lamp. J. Electrochem. Soc. 157(6), J216–J220 (2010). https://doi.org/10.1149/1.3384662

    Article  CAS  Google Scholar 

  57. C.P. Yang, F. Jia, Crack opening model for unidirectional ceramic matrix composites at elevated temperature. Ceram. Int. 44, 17167–17173 (2018). https://doi.org/10.1016/j.ceramint.2018.06.172

    Article  CAS  Google Scholar 

  58. M. Jayachandiran, S.M.M. Kennedy, Synthesis and optical properties of Ba3Bi2 (PO4)4: Dy3+ phosphors for white light emitting diodes. J. Alloy Compd. 775, 353–359 (2019). https://doi.org/10.1016/j.jallcom.2018.10.148

    Article  CAS  Google Scholar 

  59. H. Kong, Y. Feng, M. Zhu, F. Zheng, C. Dou, S. Ullah, S. Sun, D. Zhong, B. Teng, J. Lumin. 217, 116823 (2020). https://doi.org/10.1016/j.jlumin.2019.116823

    Article  CAS  Google Scholar 

  60. M.G. Brik, ŽM. Antic, K. Vukovic, M.D. Dramicanin, Mater. Trans. 56, 1416–1418 (2015). https://doi.org/10.2320/matertrans.MA201566

    Article  CAS  Google Scholar 

  61. A. Ćirić, S. Stojadinović, M. Sekulić, M.D. Dramićanin, J. Lumin. 205, 351–356 (2019). https://doi.org/10.1016/j.jlumin.2018.09.048

    Article  CAS  Google Scholar 

  62. K.J. Albert, E.A. Rathnakumari, S.M.M. Kennedy, Synthesis, photoluminescent properties, and an insight into the Judd-Ofelt analysis of the NaPbBi (2–x)(PO4)3: xEu3+ orthophosphate phosphors for light applications. J. Alloys Compd. 934, 168047 (2023). https://doi.org/10.1016/j.jallcom.2022.168047

    Article  CAS  Google Scholar 

  63. V.R. Mala, P. Balakrishnan, S.M.M. Kennedy, Effect of co-doping alkali metal ions Li+/Na+/K+ on the photoluminescence enhancement properties of the near white light emitting LiSrVO4: Dy3+ phosphor along with the optical transition probabilities by Judd-Ofelt analysis for WLEDs application. Solid State Sci. 138, 107131 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of Sri Sivasubramaniya Nadar College of Engineering (SSNCE), Chennai for their constant support to carry out the Research. The author, A. Princy thanks to the management for the financial support through SSN-JRF. We extend our thanks to the SSN Research Centre, for providing the powder XRD measurement facility.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

AP: Conceptualization, Data curation, Formal analysis, Investigation, Visualization, Writing—original draft. KJA: Review & editing, Formal analysis, Visualization. VRM: Formal analysis, Visualization. SMMK: Supervision, Writing—review & editing.

Corresponding author

Correspondence to S. Masilla Moses Kennedy.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Princy, A., Albert, K.J., Mala, V.R. et al. Greenish–Yellow Luminescence in Vanadate Garnet Phosphors: Structural Characterization, Energy Transfer and Judd–Ofelt Analysis of Dy3+ Doped Ca2LiMg2V3O12. J Inorg Organomet Polym 33, 2399–2410 (2023). https://doi.org/10.1007/s10904-023-02687-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02687-9

Keywords

Navigation