Skip to main content
Log in

Synthesis and Luminescent Properties of Multicomponent Garnets Y3MgGa3SiO12, Y3MgGa2AlSiO12, and Y3MgGaAl2SiO12 Doped with Cr3+ Ions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ceramic samples of Y3MgGa3SiO12, Y3MgGa2AlSiO12, and Y3MgGaAl2SiO12 multicomponent garnets doped with 0.2 at % Cr3+ have been obtained by high-temperature solid-state synthesis. In the luminescence spectra of the synthesized garnet samples, overlapping broadband luminescence is observed in the far red spectral region caused by the 4T24A2 transition in Cr3+ ions, and a narrow band is observed in the range of 690–700 nm, corresponding to the zero-phonon line of the 2Е → 4A2 transition in Cr3+. The narrow-band and broad-band parts of the spectra are attributed to radiation from two different types of chromium centers, which are in octahedral coordination with different distortion degrees and strength of the crystal field. This results from the presence of two ions at the octahedral position of these garnets, which differ significantly in crystal chemical properties, namely, Mg2+ and Ga3+ (Al3+). The studied phosphors, which have broadband luminescence in the phytoactive far red region of the spectrum, have the potential for use in greenhouse LED lamps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. S. Adachi, ECS J. Solid State Sci. Technol. 10, 026001 (2021). https://doi.org/10.1149/2162-8777/abdc01

    Article  CAS  Google Scholar 

  2. S. Adachi, ECS J. Solid State Sci. Technol. 10, 036001 (2021). https://doi.org/10.1149/2162-8777/abdfb7

    Article  CAS  Google Scholar 

  3. G. B. Nair, H. C. Swart, and S. J. Dhoble, Prog. Mater. Sci. 109, 100622 (2020). https://doi.org/10.1016/j.pmatsci.2019.100622

    Article  CAS  Google Scholar 

  4. S. J. Dhoble, R. Priya, N. S. Dhoble, and O. P. Pandey, Luminescence 36, 560 (2021). https://doi.org/10.1002/bio.3991

    Article  CAS  PubMed  Google Scholar 

  5. M. H. Fang, G. N. A. De Guzman, Z. Bao, et al., J. Mater. Chem. C 8, 11013 (2020). https://doi.org/10.1039/d0tc02705g

    Article  CAS  Google Scholar 

  6. S. Zhen and B. Bugbee, Plant, Cell Environ. 43, 1259 (2020). https://doi.org/10.1111/pce.13730

    Article  CAS  PubMed  Google Scholar 

  7. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 776 (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  Google Scholar 

  8. B. Malysa, A. Meijerink, and T. Justel, J. Lumin. 202, 523 (2018). https://doi.org/10.1016/j.jlumin.2018.05.076

    Article  CAS  Google Scholar 

  9. D. Huang, H. Zhu, Z. Deng, et al., J. Mater. Chem. C 9, 164 (2021). https://doi.org/10.1039/d0tc04803h

    Article  CAS  Google Scholar 

  10. A. Bindhu, J. I. Naseemabeevi, and S. Ganesanpotti, Crit. Rev. Solid State Mater. Sci. 47, 621 (2022). https://doi.org/10.1080/10408436.2021.1935211

    Article  CAS  Google Scholar 

  11. B. Sun, B. Jiang, J. Fan, et al., J. Am. Ceram. Soc. 106, 513 (2023). https://doi.org/10.1111/jace.18772

    Article  CAS  Google Scholar 

  12. N. M. Khaidukov, V. N. Makhov, Q. Zhang, et al., Dyes Pigm. 142, 524 (2017). https://doi.org/10.1016/j.dyepig.2017.04.013

    Article  CAS  Google Scholar 

  13. N. M. Khaidukov, M. N. Brekhovskikh, N. Yu. Kirikova, et al., Russ. J. Inorg. Chem. 65, 1135 (2020). https://doi.org/10.1134/S0036023620080069

    Article  CAS  Google Scholar 

  14. N. M. Khaidukov, M. N. Brekhovskikh, N. Yu. Kirikova, et al., Russ. J. Inorg. Chem. 67, 547 (2022). https://doi.org/10.1134/S003602362204009X

    Article  CAS  Google Scholar 

  15. J. A. Mares, W. Nie, and G. Boulon, J. Phys. Fr. 51, 1655 (1990). https://doi.org/10.1051/jphys:0199000510150165500

    Article  CAS  Google Scholar 

  16. D. E. McCumber and M. D. Sturge, J. Appl. Phys. 34, 1682 (1963). https://doi.org/10.1063/1.1702657

    Article  CAS  Google Scholar 

  17. T. Jansen, T. Jüstel, M. Kirm, et al., J. Lumin. 198, 314 (2018). https://doi.org/10.1016/j.jlumin.2018.02.054

    Article  CAS  Google Scholar 

  18. G. T. Pott and B. D. McNicol, J. Solid State Chem. 7, 132 (1973). https://doi.org/10.1016/0022-4596(73)90145-X

    Article  CAS  Google Scholar 

  19. T. Abritta, N. T. Melamed, J. M. Neto, and F. De Souza Barros, J. Lumin. 18–19, 179 (1979). https://doi.org/10.1016/0022-2313(79)90098-X

    Article  Google Scholar 

  20. B. Henderson and G. F. Imbush, Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989).

    Google Scholar 

  21. L. Shang, M. Liu, and C. K. Duan, J. Phys. Chem. Lett. 13, 10635 (2022). https://doi.org/10.1021/acs.jpclett.2c02835

    Article  CAS  PubMed  Google Scholar 

  22. G. Querel and B. Reynard, Geophys. Rev. Lett. 25, 195 (1998). https://doi.org/10.1029/97GL03614

    Article  CAS  Google Scholar 

  23. M. G. Brik, S. J. Camardello, and A. M. Srivastava, ECS J. Solid State Sci. Technol. 4, R39 (2015). https://doi.org/10.1149/2.0031503jss

    Article  CAS  Google Scholar 

  24. S. P. Feofilov, A. B. Kulinkin, P. A. Rodnyi, et al., J. Lumin. 200, 196 (2018). https://doi.org/10.1016/j.jlumin.2018.04.017

    Article  CAS  Google Scholar 

  25. T. Senden, R. J. A. van Dijk-Moes, and A. Meijerink, Light Sci. Appl. 7, 8 (2018). https://doi.org/10.1038/s41377-018-0013-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Center for Collective Use of the Physical Methods of Research of the Kurnakov Institute of General and Inorganic Chemistry (IGIC RAS) and the Lebedev Physical Institute (FIAN RAS).

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Assignments of the Kurnakov Institute of General and Inorganic Chemistry (IGIC RAS) and the Lebedev Physical Institute (FIAN RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Brekhovskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaidukov, N.M., Nikonov, K.S., Brekhovskikh, M.N. et al. Synthesis and Luminescent Properties of Multicomponent Garnets Y3MgGa3SiO12, Y3MgGa2AlSiO12, and Y3MgGaAl2SiO12 Doped with Cr3+ Ions. Russ. J. Inorg. Chem. 68, 961–971 (2023). https://doi.org/10.1134/S0036023623601149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601149

Keywords:

Navigation