Skip to main content

Advertisement

Log in

Investigations on Polypyrrole/Prussian Blue/Ruthenium Dioxide Based Ternary Nanocomposite as an Electrode Material for Supercapacitors

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The successful synthesis of ternary PPy/PB/RuO2 nanocomposite through oxidative polymerization assisted chemical method and its fabrication as an active electrode material for supercapacitors is reported. The FT-IR and XRD studies revealed the molecular structure and the phase composition of the as-prepared nanomaterials; wherein the average crystallite size of PPy/PB/RuO2 was found to be 10 nm. The uniformly distributed porous structure observed in the micrograph of PPy/PB/RuO2 showed the effective interconnection of well-dispersed nanoparticles. TGA revealed the high thermal stability of PPy/PB/RuO2 due to the packing arrangement of RuO2. The electrochemical activity of PPy/PB/RuO2 electrode was explored in alkaline (1 M KOH), acidic (1 M H2SO4) and neutral (1 M Na2SO4) media using three-electrode configuration mode. Due to the enhanced specific capacitance (625.13 Fg−1) of PPy/PB/RuO2 in Na2SO4 electrolyte, CV studies of PPy, PB and RuO2 electrodes were also carried out in Na2SO4 aqueous media to understand the charge storage mechanism in individual components. From GCD, the ternary electrode exhibited longest charge/discharge time with high specific capacitance value (504.90 Fg−1) at 5 Ag−1. The low charge transfer resistance and 92% of its capacitive retention after 5000 cycles indicated that PPy/PB/RuO2 could be a reliable candidate for supercapacitive electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J.A. Wang, Y.T. Lu, S.C. Lin, Y.S. Wang, C.C.M. Ma, C.C. Hu, Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors. ACS Appl. Mater. Interfaces 10, 17871–17882 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. B. Jinisha, K.M. Anilkumar, M. Manoj, C.M. Ashraf, V.S. Pradeep, S. Jayalekshmi., solid-state supercapacitor with impressive performance characteristics, assembled using redox-mediated gel polymer electrolyte. J. Solid State Electrochem. 23, 3343–3353 (2019)

    Article  CAS  Google Scholar 

  3. L. Yu, G.Z. Chen, Supercapatteries as high-performance electrochemical energy storage devices. Electrochem. Energy Rev. 3, 271–285 (2020)

    Article  Google Scholar 

  4. Y. Gogotsi, R.M. Penner, Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like. ACS Nano. 12, 2081–2083 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. S. Balasubramaniam, A. Mohanty, S.K. Balasingam, S.J. Kim, A. Ramadoss, Comprehensive insight into the mechanism, material selection and performance evaluation of supercapatteries. Nano-Micro Lett. 12, 1–46 (2020)

    Article  Google Scholar 

  6. K. Adams, J. Mallows, T. Li, D. Kampouris, J.H. Thijssen, N. Robertson, Cs3Bi2I9 as high-performance electrode material achieving high capacitance and stability in an economical supercapacitor. J. Phys. Energy 1, 034001 (2019)

    Article  CAS  Google Scholar 

  7. M. Mirzaeian, Q. Abbas, M.R. Hunt, P. Hall. Pseudocapacitive effect of carbons doped with different functional groups as electrode materials for electrochemical capacitors. Energies 13, 5577 (2020)

    Article  CAS  Google Scholar 

  8. V. Nisha, A. Paravannoor, D. Panoth, S.T. Manikkoth, K.M. Thulasi, S. Palantavida, B.K. Vijayan., CdS nanosheets as electrode materials for all pseudocapacitive asymmetric supercapacitors. Bull. Mater. Sci. 44, 1–7 (2021)

    Article  Google Scholar 

  9. R. Ramkumar, M. Minakshi, Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans. 44, 6158–6168 (2015)

    Article  CAS  PubMed  Google Scholar 

  10. B. Pal, S. Yang, S. Ramesh, V. Thangadurai, R. Jose., Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Adv. 1, 3807–3835 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  11. R. Liang, Y. Du, P. Xiao, J. Cheng, S. Yuan, Y. Chen, J. Yuan, J. Chen., Transition metal oxide electrode materials for supercapacitors: a review of recent developments. J. Nanomater 11, 1248 (2021)

    Article  CAS  Google Scholar 

  12. C. Young, J. Kim, Y.V. Kaneti, Y. Yamauchi. One-step synthetic strategy of hybrid materials from bimetallic metal–organic frameworks for supercapacitor applications. ACS Appl. Energy Mater. 1, 2007–2015 (2018)

    Article  CAS  Google Scholar 

  13. A. Manivel, A.M. Asiri, K.A. Alamry, T. Lana-Villarreal, S. Anandan, Interfacially synthesized PAni-PMo12 hybrid material for supercapacitor applications. Bull. Mater. Sci. 37, 861–869 (2014)

    Article  CAS  Google Scholar 

  14. X. Zhang, X. Zeng, M. Yang, Y. Qi. Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mater. Interfaces 6, 1125–1130 (2014)

    Article  CAS  PubMed  Google Scholar 

  15. C. Yang, H. Chen, C. Guan. Hybrid CoO nanowires coated with uniform polypyrrole nanolayers for high-performance energy storage devices. J. Nanomater 9, 586 (2019)

    Article  CAS  Google Scholar 

  16. F. Xu, L. Sun, C. Tang. Prussian-blue-doped super-activated carbon as a high performance supercapacitor electrode material. Int. J. Electrochem. Sci. 11, 5679–5690 (2016)

    Article  Google Scholar 

  17. A. Azhar, Y. Yamauchi, A.E. Allah, Z.A. Alothman, A.Y. Badjah, M. Naushad, M. Habila, S. Wabaidur, J. Wang, M.B. Zakaria, Nanoporous iron oxide/carbon composites through in-situ deposition of prussian blue nanoparticles on graphene oxide nanosheets and subsequent thermal treatment for supercapacitor applications. J. Nanomater 9, 776 (2019)

    Article  CAS  Google Scholar 

  18. W. Yang, J. Zeng, Z. Xue, T. Ma, J. Chen, N. Li, H. Zou, S. Chen., synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor. Ionics 26, 961–970 (2020)

    Article  CAS  Google Scholar 

  19. R. Ramkumar, G. Dhakal, J.J. Shim, W.K. Kim., NiO/Ni Nanowafer Aerogel Electrodes for high performance supercapacitors. Nanomaterials 12, 3813 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. S. Dhibar, C.K. Das, Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material. J. Appl. Polym. Sci. 134, 44724 (2017)

    Article  Google Scholar 

  21. M. Kazazi, High-performance electrode based on electrochemical polymerization of polypyrrole film on electrophoretically deposited CNTs conductive framework for supercapacitors. Solid State Ion 336, 80–86 (2019)

    Article  CAS  Google Scholar 

  22. L. Wang, C. Zhang, X. Jiao, Z. Yuan, Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 12, 1129–1137 (2019)

    Article  CAS  Google Scholar 

  23. A. Yağan. Investigation of polypyrrole-based Iron electrodes as Supercapacitors. Int. J. Electrochem. Sci. 14, 3978–3985 (2019)

    Article  Google Scholar 

  24. J. Stejskal, M. Trchová. Conducting polypyrrole nanotubes: a review. Chem. Pap 72, 1563–1595 (2018)

    Article  CAS  Google Scholar 

  25. A. Kausaite-Minkstimiene, V. Mazeiko, A. Ramanaviciene, A. Ramanavicius, Evaluation of chemical synthesis of polypyrrole particles. Colloids Surf. A Physicochem Eng. Asp 483, 224–231 (2015)

    Article  CAS  Google Scholar 

  26. S. Tajik, H. Beitollahi, F.G. Nejad, I.S. Shoaie, M.A. Khalilzadeh, M.S. Asl, Q. Van Le, K. Zhang, H.W. Jang, M. Shokouhimehr., recent developments in conducting polymers: applications for electrochemistry. RSC Adv. 10, 37834–37856 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.F. Ghadim, A. Imani, G. Farzi. Synthesis of PPy–silver nanocomposites via in situ oxidative polymerization. J. Nanostructure chem. 4, 1–5 (2014)

    Article  Google Scholar 

  28. L.M. Santino, E. Hwang, Y. Diao, Y. Lu, H. Wang, Q. Jiang, S. Singamaneni, J.M. D’Arcy., condensing vapor phase polymerization (cvpp) of electrochemically capacitive and stable polypyrrole microtubes. ACS Appl. Mater. Interfaces 9, 41496–41504 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. X. Liu, J. Yang, X. Li, Q. Li, Y. Xia, Fabrication of polypyrrole (PPy) nanotube electrode for supercapacitors with enhanced electrochemical performance. J. Mater. Sci. Mater. Electron. 31, 581–586 (2020)

    Article  CAS  Google Scholar 

  30. L. Tong, M. Gao, C. Jiang, K. Cai. Ultra-high performance and flexible polypyrrole coated CNT paper electrodes for all-solid-state supercapacitors. J. Mater. Chem. A 7, 10751–10760 (2019)

    Article  CAS  Google Scholar 

  31. Y. Wei, L. Li, X. Yang, G. Pan, G. Yan, X. Yu., One-step UV-induced synthesis of polypyrrole/Ag nanocomposites at the water/ionic liquid interface. Nanoscale Res. Lett. 5, 433–437 (2010)

    Article  CAS  Google Scholar 

  32. A.Y. Men’shikova, B.M. Shabsel’s, T.G. Evseeva, Synthesis of polypyrrole nanoparticles by dispersion polymerization. Russ J. Appl. Chem. 76, 822–826 (2003)

    Article  Google Scholar 

  33. Y.D. Kim, J.H. Kim, Synthesis of polypyrrole–polycaprolactone composites by emulsion polymerization and the electrorheological behavior of their suspensions. Colloid Polym. Sci. 286, 631–637 (2008)

    Article  CAS  Google Scholar 

  34. H.J. Jang, B.J. Shin, E.Y. Jung, G.T. Bae, J.Y. Kim, H.S. Tae., Polypyrrole film synthesis via solution plasma polymerization of liquid pyrrole. Appl. Surf. Sci. 608, 155129 (2023)

    Article  CAS  Google Scholar 

  35. S. Paszkiewicz, A. Szymczyk, Graphene-based nanomaterials and their polymer nanocomposites, in Nanomaterials and polymer nanocomposites. (Elevier, 2019), pp.177–216

    Google Scholar 

  36. G. Moretti, C. Gervais, Raman spectroscopy of the photosensitive pigment prussian blue. J. Raman Spectrosc. 49, 1198–1204 (2018)

    Article  CAS  Google Scholar 

  37. J. Li, Y. Jiang, Y. Zhai, H. Liu, L. Li, Prussian blue/reduced graphene oxide composite for the amperometric determination of dopamine and hydrogen peroxide. Anal. Lett. 48, 2786–2798 (2015)

    Article  CAS  Google Scholar 

  38. M. Luo, Y. Dou, H. Kang, Y. Ma, X. Ding, B. Liang, B. Ma, L. Li, A novel interlocked prussian blue/reduced graphene oxide nanocomposites as high-performance supercapacitor electrodes. J. Solid State Electrochem. 19, 1621–1631 (2015)

    Article  CAS  Google Scholar 

  39. P.K. Lee, P.M. Nia, P.M. Woi, Self-assembled prussian blue–polypyrrole nanocomposites for energy storage application. J. Appl. Electrochem. 49, 631–638 (2019)

    Article  CAS  Google Scholar 

  40. S. Muthusamy, J. Charles, Metal–organic framework of nanostructured polypyrrole incorporated with TiO2 nanoparticles for supercapacitor electrode. J. Mater. Sci. Mater. Electron. 32, 7349–7365 (2021)

    Article  CAS  Google Scholar 

  41. D. Dong, Ternary composite MnO2@MoS2/polypyrrole from in-situ synthesis for binder-free and flexible supercapacitor. J. Bioresour Bioprod. 4, 242–250 (2019)

    CAS  Google Scholar 

  42. M. Abdollahi, F. Shahidi-Zandi, M.M. Foroughi, M. Kazemipour. Electrochemical Investigation of Polypyrrole/Nd2O3 nanocomposite as high performance supercapacitor material on mild steel substrate. Int. J. Electrochem. Sci. 15, 11757–11768 (2020)

    Article  CAS  Google Scholar 

  43. J. Iqbal, A. Numan, M.O. Ansari, P.R. Jagadish, R. Jafer, S. Bashir, S. Mohamad, K. Ramesh, S. Ramesh., Facile synthesis of ternary nanocomposite of polypyrrole incorporated with cobalt oxide and silver nanoparticles for high performance supercapattery. Electrochim. Acta 348, 136313 (2020)

    Article  CAS  Google Scholar 

  44. X. Wang, T. Wang, D. Liu, J. Guo, P. Liu. Synthesis and electrochemical performance of CeO2/PPy nanocomposites: interfacial effect. Ind. Eng. Chem. Res. 55, 866–874 (2016)

    Article  CAS  Google Scholar 

  45. X. Zhang, X. Zeng, M. Yang, Y. Qi. Investigation of a branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl. Mater. Interfaces 6, 1125–1130 (2018)

    Article  Google Scholar 

  46. J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao. Interfacial constructing flexible V2O5@polypyrrole core–shell nanowire membrane with superior supercapacitive performance. ACS Appl. Mater. Interfaces 10, 18816–18823 (2018)

    Article  CAS  PubMed  Google Scholar 

  47. V.S.R. Channu, R. Holze, S.A. Wicker Sr, E.H. Walker Jr., Q.L. Williams, R.R. Kalluru, Synthesis and characterization of (Ru-Sn)O2 nanoparticles for supercapacitors. Mater. Sci. Appl. 2, 1175 (2011)

    CAS  Google Scholar 

  48. Z.G. Ye, G.W. Liu, G.B. Huang, K. Wang, G.J. Qiao, Nano-Wedge IrO2/MnO2 hybrid Film Electrode for Electrochemical Supercapacitors. ECS Electrochem. Lett. 2, A118–A120 (2013)

    Article  CAS  Google Scholar 

  49. S.H. Patil, A.P. Gaikwad, B.J. Waghmode, S.D. Sathaye, K.R. Patil, A graphene–MnO2 composite supercapacitor material accomplished tactically using liquid–liquid and solid–liquid interface reaction techniques. New. J. Chem. 44, 6853–6861 (2020)

    Article  CAS  Google Scholar 

  50. M. Vyas, K. Pareek, R. Rohan, P. Kumar. Performance optimization of Co2O3-PVDF-CNT-based supercapacitor electrode through multi-response optimization method. Ionics 25, 5991–6005 (2019)

    Article  CAS  Google Scholar 

  51. J.P. Jyothibasu, M.Z. Chen, Y.C. Tien, C.C. Kuo, E.C. Chen, Y.C. Lin, T.C. Chiang, R.H. Lee., V2O5/carbon nanotube/polypyrrole based freestanding negative electrodes for high-performance supercapacitors. Catalysts 11, 980 (2021)

    Article  CAS  Google Scholar 

  52. Y.C. Chung, A. Julistian, L. Saravanan, P.R. Chen, B.C. Xu, P.J. Xie, A.Y. Lo, Hydrothermal synthesis of CuO/RuO2/MWCNT nanocomposites with morphological variants for high efficient supercapacitors. Catalysts 12, 23 (2021)

    Article  Google Scholar 

  53. S.K. Ponnaiah, P. Prakash, A new high-performance supercapacitor electrode of strategically integrated cerium vanadium oxide and polypyrrole nanocomposite. Int. J. Hydrog. Energy 46, 19323–19337 (2021)

    Article  CAS  Google Scholar 

  54. A.T. Mane, S.T. Navale, R.C. Pawar, C.S. Lee, V.B. Patil, Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites. Synth. Met. 199, 187–195 (2015)

    Article  CAS  Google Scholar 

  55. J.A. Lett, S. Sagadevan, S.F. Alshahateet, B. Murugan, A.H. Jasni, I. Fatimah, M.M. Hossain, F. Mohammad, W.C. Oh, Synthesis and characterization of polypyrrole-coated iron oxide nanoparticles. Mater. Res. Express 8, 025007 (2021)

    Article  CAS  Google Scholar 

  56. S.R. Nalage, S.T. Navale, V.B. Patil, Polypyrrole-NiO hybrid nanocomposite: structural, morphological, optical and electrical transport studies. Measurement 46, 3268–3275 (2013)

    Article  Google Scholar 

  57. R. BoopathiRaja, S. Vadivel, M. Parthibavarman, S. Prabhu, R. Ramesh. Effect of polypyrrole incorporated sun flower like Mn2P2O7 with lab waste tissue paper derived activated carbon for asymmetric supercapacitor applications. Surf. Interfaces 26, 101409 (2021)

    Article  CAS  Google Scholar 

  58. L. Yuan, C. Wan, L. Zhao, Facial in-situ synthesis of MnO2/PPy composite for supercapacitor. Int. J. Electrochem. Sci. 10, 9456–9465 (2015)

    Article  CAS  Google Scholar 

  59. M.T. Ramesan, V. Santhi., in situ synthesis, characterization, conductivity studies of polypyrrole/silver doped zinc oxide nanocomposites and their application for ammonia gas sensing. J. Mater. Sci. Mater. Electron. 28, 18804–18814 (2017)

    Article  CAS  Google Scholar 

  60. S. Muthusamy, J. Charles, B. Renganathan, D. Sastikumar., in situ growth of prussian blue nanocubes on polypyrrole nanoparticles: facile synthesis, characterization and their application as fiber optic gas sensor. J. Mater. Sci. 53, 15401–15417 (2018)

    Article  CAS  Google Scholar 

  61. R. Gunasekaran, J. Charles, Synthesis, structural, morphological and optical analyses of new prussian blue, ruthenium oxide and polyindole (PIn-PB-RuO2) nanocomposite. J. Polym. Res. 29, 1–19 (2022)

    Article  Google Scholar 

  62. M. Khorasani-Motlagh, M. Noroozifar, M. Yousefi, A simple new method to synthesize nanocrystalline ruthenium dioxide in the presence of octanoic acid as organic surfactant. J. Nanosci. Nanotechnol. 7, 167–172 (2011)

    Google Scholar 

  63. S. Kazim Moosvi, K. Majid, T. Ara. Synthesis and characterization of PPY/K [Fe(CN)3 (OH)(en)] nanocomposite: study of photocatalytic, sorption, electrical, and thermal properties. J. Appl. Polym. Sci. 133, 43487 (2016)

    Article  Google Scholar 

  64. S. Nappini, A. Matruglio, D. Naumenko, S. Dal Zilio, M. Lazzarino, F.M. De Groot, C. Kocabas, O. Balci, E. Magnano., Graphene nanoreactors: photoreduction of prussian blue in aqueous solution. J. Phys. Chem. C 121, 22225–22233 (2017)

    Article  CAS  Google Scholar 

  65. W. Sun, Z. Wei, J. Qi, L. Kang, J. Li, J. Xie, B. Tang, Xie., Rapid and scalable synthesis of prussian blue analogue nanocubes for electrocatalytic water oxidation. Chin. J. Chem. 39, 2347–2353 (2021)

    Article  CAS  Google Scholar 

  66. J. Nayak, S.K. Mahadeva, J. Kim, Characteristics of flexible electrode made on cellulose by soluble polypyrrole coating. Proc. Inst. Mech. Eng. Part C 226, 2605–2609 (2012)

    Article  CAS  Google Scholar 

  67. J. Lei, X. Chen, RuO2/MnO2 composite materials for high-performance supercapacitor electrodes. J. Semicond. 36, 083006 (2015)

    Article  Google Scholar 

  68. S. Muthusamy, J. Charles., in situ synthesis of ternary prussian blue, hierarchical SnO2 and polypyrrole by chemical oxidative polymerization and their sensing properties to volatile organic compounds. Optik 241, 166968 (2021)

    Article  CAS  Google Scholar 

  69. M.A. Busquets, A. Novella-Xicoy, V. Guzmán, J. Estelrich., Facile synthesis of novel prussian blue–lipid nanocomplexes. Molecules 24, 4137 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments. Appl. Surf. Sci. 255, 4192–4196 (2009)

    Article  CAS  Google Scholar 

  71. S. Dhibar, C.K. Das, Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material. J. Appl. Polym. Sci. 134, 16 (2017)

    Article  Google Scholar 

  72. S. Khan, M. Alkhedher, R. Raza, M.A. Ahmad, A. Majid, E.M.T.E. Din, Electrochemical investigation of PANI: PPy/AC and PANI: PEDOT/AC composites as electrode materials in supercapacitors. Polymers 14, 1976 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. N. Balasubramanian, S. Prabhu, N. Sakthivel, R. Ramesh, S.A. Kumar, P.M. Anbarasan, Electrochemical performance of Fe2O3@PPy nanocomposite as an effective electrode material for supercapacitor. ECS J. Solid State Sci. Technol. 11, 091001 (2022)

    Article  Google Scholar 

  74. B.S. Singu, K.R. Yoon, Highly exfoliated GO-PPy-Ag ternary nanocomposite for electrochemical supercapacitor. Electrochim. Acta 268, 304–315 (2018)

    Article  CAS  Google Scholar 

  75. A. Singh, Z. Salmi, N. Joshi, P. Jha, P. Decorse, H. Lecoq, S. Lau-Truong, M. Jouini, D.K. Aswal, M.M. Chehimi., Electrochemical investigation of free-standing polypyrrole–silver nanocomposite films: a substrate free electrode material for supercapacitors. RSC Adv. 3, 24567–24575 (2013)

    Article  CAS  Google Scholar 

  76. A. Bahloul, B. Nessark, E. Briot, H. Groult, A. Mauger, K. Zaghib, C.M. Julien., Polypyrrole-covered MnO2 as electrode material for supercapacitor. J. Power Sources 240, 267–272 (2013)

    Article  CAS  Google Scholar 

  77. J. Dong, Y. Lin, H. Zong, H. Yang. Hierarchical LiFe5O8@ PPy core-shell nanocomposites as electrode materials for supercapacitors. Appl. Surf. Sci. 470, 1043–1052 (2019)

    Article  CAS  Google Scholar 

  78. J. Huang, X. Qian, X. An, X. Li, J. Guan, Double in situ fabrication of PPy@ MnMoO 4/cellulose fibers flexible electrodes with high electrochemical performance for supercapacitor applications. Cellulose 27, 5829–5843 (2020)

    Article  CAS  Google Scholar 

  79. W.K. Chee, H.N. Lim, I. Harrison, K.F. Chong, Z. Zainal, C.H. Ng, N.M. Huang, Performance of flexible and binderless polypyrrole/graphene oxide/zinc oxide supercapacitor electrode in a symmetrical two-electrode configuration. Electrochim. Acta 157, 88–94 (2015)

    Article  CAS  Google Scholar 

  80. S. Biswas, L.T. Drzal, Multilayered nanoarchitecture of graphene nanosheets and polypyrrole nanowires for high performance supercapacitor electrodes. Chem. Mater. 22, 5667–5671 (2010)

    Article  CAS  Google Scholar 

  81. X. Fan, Z. Yang, N. He, Hierarchical nanostructured polypyrrole/graphene composites as supercapacitor electrode. RSC Adv. 5, 15096–15102 (2015)

    Article  CAS  Google Scholar 

  82. R. Ullah, N. Khan, R. Khattak, M. Khan, M.S. Khan, O.M. Ali., Preparation of electrochemical supercapacitor based on polypyrrole/gum arabic composites. Polymers 14, 242 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. W. Wu, L. Yang, S. Chen, Y. Shao, L. Jing, G. Zhao, H. Wei, Core–shell nanospherical polypyrrole/graphene oxide composites for high performance supercapacitors. RSC Adv. 5, 91645–91653 (2015)

    Article  CAS  Google Scholar 

  84. H.M. Yadav, S. Ramesh, K.A. Kumar, S. Shinde, S. Sandhu, A. Sivasamy, N.K. Shrestha, H.S. Kim, C. Bathula., Impact of polypyrrole incorporation on nickel oxide@ multi walled carbon nanotube composite for application in supercapacitors. Polym. Test. 89, 106727 (2020)

    Article  CAS  Google Scholar 

  85. A.K. Thakur, R.B. Choudhary, M. Majumder, G. Gupta, M.V. Shelke, Enhanced electrochemical performance of polypyrrole coated MoS2 nanocomposites as electrode material for supercapacitor application. J. Electroanal. Chem. 782, 278–287 (2016)

    Article  CAS  Google Scholar 

  86. J. Ji, X. Zhang, Z. Huang, X. Yu, H. Huang, Y. Huang, L. Li, One-step synthesis of graphene oxide/polypyrrole/MnO2 ternary nanocomposites with an improved electrochemical capacitance. J. Nanosci. Nanotechnol 17, 4356–4361 (2017)

    Article  CAS  Google Scholar 

  87. A.R. Bredar, A.L. Chown, A.R. Burton, B.H. Farnum., Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications. ACS Appl. Energy Mater. 3, 66–98 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the management of Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, for the financial support provided in the current research work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

RG: Investigation of the novel material, Carrying out characterization in the neighbouring institutes, writing–original draft preparation. JC: Framing the base idea of the research, Supervision of the research work, Revision and review of the work. PSK: Provided the Instrumentation facility.

Corresponding author

Correspondence to Julie Charles.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunasekaran, R., Charles, J. & Kumar, S.P. Investigations on Polypyrrole/Prussian Blue/Ruthenium Dioxide Based Ternary Nanocomposite as an Electrode Material for Supercapacitors. J Inorg Organomet Polym 33, 2445–2464 (2023). https://doi.org/10.1007/s10904-023-02685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02685-x

Keywords

Navigation