Skip to main content

Advertisement

Log in

MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work focuses on the degradation of methylene blue dye using graphene oxide and metal–organic frameworks (MOFs). In particular, the performance of these materials towards the photocatalytic of methylene blue dye (MB) under sun irradiation was investigated. To this aim, graphene oxide (GO) and metal–organic framework (MOF-5) were synthesized using the modified Hummer's method and room temperature method respectively. Our resulting composites MOF-5/GO contain 5 and 10 wt% of GO. X-Ray Diffraction (XRD), FTIR spectroscopy, Thermogravimetric Analysis (TGA), and UV–Vis spectroscopy were used to characterize the structure and the thermal stability of the synthesized materials. The degradation of methylene blue was performed under varying conditions of pH and mass ratio. Our results indicate that, for the degradation of methylene blue dye under 390 min of solar exposure, the hybrid materials MOF-5/GO exhibit a remarkable photocatalytic efficiency when compared to the pure MOF-5. MOF-5/GO achieved 92% degradation at pH = 6.8 of MB. The reduced band gap, various functional groups and an adequate supply of active sites also are additional advantages in this design. The kinetic indicates that the Langmuir–Hinshelwood (L–H) model is well adapted to the experimental data. We demonstrated, using a linear fit that the degradation obeys a pseudo-first-order kinetic with apparent constants of 0.0369 and 0.0396 min−1 for MOF-5/GO5 and MOF-5/GO10 respectively. In contrast, in the case of a reaction with the highest activity, a nonlinear technique method was used to obtain the apparent reaction rate constants. Finally, the improved photocatalytic mechanism over MOF-5/GO was also suggested. The hybrid combination of MOF-5 and GO confers a synergistic effect that is crucial for delaying the rate of photogenerated electron–hole recombination and maximizing charge transfer throughout the entire hybrid system structure, leading to a high efficiency photocatalytic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  1. X. Dai, X. Li, M. Zhang, J. Xie, X. Wang, ACS Omega 3, 6860 (2018)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. M. Hachemaoui, A. Mokhtar, S. Abdelkrim, R. Ouargli-Saker, F. Zaoui, R. Hamacha, H. HabibZahmani, S. Hacini, A. Bengueddach, B. Boukoussa, J. Polym. Environ. 29, 3813 (2021)

    Article  CAS  Google Scholar 

  3. A.S. Al-Wasidi, F.A. Saad, S. AlReshaidan, A.M. Naglah, J. Inorg. Organomet. Polym. Mater. 32, 3040 (2022)

    Article  CAS  Google Scholar 

  4. S.M. Mirsoleimani-azizi, P. Setoodeh, S. Zeinali, M.R. Rahimpour, J. Environ. Chem. Eng. 6, 6118 (2018)

    Article  CAS  Google Scholar 

  5. Q.V. Thi, M.S. Tamboli, Q. ThanhHoai Ta, G.B. Kolekar, D. Sohn, Mater. Sci. Eng. B 261, 114678 (2020)

    Article  Google Scholar 

  6. A.M. Abd-Elnaiem, R.F. Abd El-Baki, F. Alsaaq, S. Orzechowska, D. Hamad, J. Inorg. Organomet. Polym. Mater. 32, 1191 (2022)

    Article  CAS  Google Scholar 

  7. A.G. Mahdy, A.A. Emam, E.A. Mussa, A.Y. Abdel-All, M.M. Rashad, J. Inorg. Organomet. Polym. Mater. 20123, 1–18 (2023)

    Google Scholar 

  8. Y. Luan, Y. Qi, Z. Jin, X. Peng, H. Gao, G. Wang, RSC Adv. 5, 19273 (2015)

    Article  CAS  Google Scholar 

  9. K. Xie, C. Shan, J. Qi, S. Qiao, Q. Zeng, L. Zhang, Desalin. Water Treat. 54, 654 (2015)

    Article  CAS  Google Scholar 

  10. A. Kurtuldu, H. Eşgin, N.K. Yetim, F. Semerci, J. Inorg. Organomet. Polym. Mater. 32, 2901 (2022)

    Article  CAS  Google Scholar 

  11. C. Yang, X. You, J. Cheng, H. Zheng, Y. Chen, Appl. Catal. B Environ. 200, 673 (2017)

    Article  CAS  Google Scholar 

  12. K. Pal, N. Asthana, A.A. Aljabali, S.K. Bhardwaj, S. Kralj, A. Penkova, S. Thomas, T. Zaheer, F. Gomes de Souza, Crit. Rev. Solid State Mater. Sci. 47, 691 (2022)

    Article  CAS  Google Scholar 

  13. K. Pal, A.A. Aljabali, S. Kralj, S. Thomas, F. Gomes de Souza, Chemosphere 263, 128104 (2021)

    Article  PubMed  CAS  Google Scholar 

  14. B. Paulchamy, G. Arthi, B.D. Lignesh, J. Nanomed. Nanotechnol. (2015). https://doi.org/10.4172/2157-7439.1000253

    Article  Google Scholar 

  15. K. Pal, A. Si, G.S. El-Sayyad, M.A. Elkodous, R. Kumar, A.I. El-Batal, S. Kralj, S. Thomas, Crit. Rev. Solid State Mater. Sci. 46, 385 (2021)

    Article  CAS  Google Scholar 

  16. A. Si, G.Z. Kyzas, K. Pal, F.G. de Souza Jr, J. Mol. Struct. 1239, 130518 (2021)

    Article  CAS  Google Scholar 

  17. Y. Chen, B. Zhai, Y. Liang, Y. Li, Mater. Sci. Semicond. Process. 107, 104838 (2020)

    Article  CAS  Google Scholar 

  18. B. Gui, X. Meng, H. Xu, C. Wang, Chin. J. Chem. 34, 186 (2016)

    Article  CAS  Google Scholar 

  19. Y. Ye, W. Guo, L. Wang, Z. Li, Z. Song, J. Chen, Z. Zhang, S. Xiang, B. Chen, J. Am. Chem. Soc. 139, 15604 (2017)

    Article  PubMed  CAS  Google Scholar 

  20. S. Soren, S. Chakroborty, K. Pal, Mater. Sci. Eng. B 278, 115632 (2022)

    Article  CAS  Google Scholar 

  21. M. Muschi, C. Serre, Coord. Chem. Rev. 387, 262 (2019)

    Article  CAS  Google Scholar 

  22. Y. Cao, Y. Zhao, Z. Lv, F. Song, Q. Zhong, J. Ind. Eng. Chem. 27, 102 (2015)

    Article  CAS  Google Scholar 

  23. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998 (2005)

    Article  PubMed  CAS  Google Scholar 

  24. A. Argoub, R. Ghezini, C. Bachir, B. Boukoussa, A. Khelifa, A. Bengueddach, P.G. Weidler, R. Hamacha, J. Porous Mater. 25, 199 (2018)

    Article  CAS  Google Scholar 

  25. S. Gadipelli, Z.X. Guo, Chemsuschem 8, 2123 (2015)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. S. Liu, L. Sun, F. Xu, J. Zhang, C. Jiao, F. Li, Z. Li, S. Wang, Z. Wang, X. Jiang, H. Zhou, L. Yang, C. Schick, Energy Environ. Sci. 6, 818 (2013)

    Article  CAS  Google Scholar 

  27. D. Damasceno Borges, P. Normand, A. Permiakova, R. Babarao, N. Heymans, D.S. Galvao, C. Serre, G. De Weireld, G. Maurin, J. Phys. Chem. C 121, 26822 (2017)

    Article  CAS  Google Scholar 

  28. X.-W. Liu, T.-J. Sun, J.-L. Hu, S.-D. Wang, J. Mater. Chem. A 4, 3584 (2016)

    Article  CAS  Google Scholar 

  29. R. Zhao, Y. Wu, Z. Liang, L. Gao, W. Xia, Y. Zhao, R. Zou, Energy Environ. Sci. 13, 2386 (2020)

    Article  CAS  Google Scholar 

  30. Y. Fu, Y. Li, R. Zhou, Y. Zhang, S. Chen, Y. Song, L. Wang, J. Alloys Compd. 749, 645 (2018)

    Article  CAS  Google Scholar 

  31. T. Chen, X. Liu, L. Niu, Y. Gong, C. Li, S. Xu, L. Pan, Inorg. Chem. Front. 7, 567 (2020)

    Article  CAS  Google Scholar 

  32. Y. Zheng, S. Zheng, H. Xue, H. Pang, Adv. Funct. Mater. 28, 1804950 (2018)

    Article  Google Scholar 

  33. E. Haque, J.W. Jun, S.H. Jhung, J. Hazard. Mater. 185, 507 (2011)

    Article  PubMed  CAS  Google Scholar 

  34. H. Fakhri, H. Bagheri, Mater. Sci. Semicond. Process. 107, 104815 (2020).

  35. L. Shahriary, A.A. Athawale, J. Nanotechnol. 2, 1–10 (2014)

    Article  Google Scholar 

  36. K. Issaadi, A. Habi, Y. Grohens, I. Pillin, Polym. Bull. 73, 2057 (2016)

    Article  CAS  Google Scholar 

  37. D.J. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Tetrahedron 64, 8553 (2008)

    Article  CAS  Google Scholar 

  38. C. Petit, T.J. Bandosz, Adv. Mater. 21, 4753 (2009)

    Article  CAS  Google Scholar 

  39. S. Wang, B. Ye, C. An, J. Wang, Q. Li, H. Guo, J. Zhang, Nanoscale Res. Lett. 14, 345 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  40. D. Saha, Z. Wei, S. Deng, Sep. Purif. Technol. 64, 280 (2009)

    Article  CAS  Google Scholar 

  41. R. Sabouni, H. Kazemian, S. Rohani, Chem. Eng. J. 165, 966 (2010)

    Article  CAS  Google Scholar 

  42. W. Zhen, B. Li, G. Lu, J. Ma, Chem. Commun. 51, 1728 (2015)

    Article  CAS  Google Scholar 

  43. N. Mayedwa, A.T. Khalil, N. Mongwaketsi, N. Matinise, Z.K. Shinwari, M. Maaza, Nano Res. Appl. 3, 1 (2017). https://doi.org/10.21767/2471-9838.100026

    Article  Google Scholar 

  44. C. Petit, T.J. Bandosz, Adv. Funct. Mater. 20, 111 (2010)

    Article  CAS  Google Scholar 

  45. A. Hussein, S. Sarkar, B. Kim, J. Mater. Sci. Technol. 32, 411 (2016)

    Article  CAS  Google Scholar 

  46. N. Iswarya, M.G. Kumar, K.S. Rajan, R.J.B. Balaguru, Asian J. Sci. Res. 5, 247 (2012)

    Article  CAS  Google Scholar 

  47. B. Chen, Y. Zhu, Y. Xia, RSC Adv. 5, 30464 (2015)

    Article  CAS  Google Scholar 

  48. L.H. Wee, N. Janssens, S.P. Sree, C. Wiktor, E. Gobechiya, R.A. Fischer, C.E.A. Kirschhock, J.A. Martens, Nanoscale 6, 2056 (2014)

    Article  PubMed  CAS  Google Scholar 

  49. W.-T. Xu, L. Ma, F. Ke, F.-M. Peng, G.-S. Xu, Y.-H. Shen, J.-F. Zhu, L.-G. Qiu, Y.-P. Yuan, Dalton Trans. 43, 3792 (2014)

    Article  PubMed  CAS  Google Scholar 

  50. M. Jahan, Z. Liu, K.P. Loh, Adv. Funct. Mater. 23, 5363 (2013)

    Article  CAS  Google Scholar 

  51. G. Lente, Fitting in Excel for Chemical Kinetics, (Update 2017), http://lenteg.ttk.pte.hu/KinetFit.html

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Author 1 (Badiaa Bouider) wrote the main manuscript. Authors 2 (Slimane Haffad) and 3 (Boubkeur Bouakaz) reviewed the manuscript. Author 4 (Mourad Berd) synthesized graphene oxide with the modified Hummer's method. Author 5 (Salim Ouhnia) carried out the XRD and ATR analyses. Author 6 (Abderrahmane HABI) conducted this research work and reviewed the manuscript.

Corresponding author

Correspondence to Abderrahmane Habi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouider, B., Haffad, S., Bouakaz, B.S. et al. MOF-5/Graphene Oxide Composite Photocatalyst for Enhanced Photocatalytic Activity of Methylene Blue Degradation Under Solar Light. J Inorg Organomet Polym 33, 4001–4011 (2023). https://doi.org/10.1007/s10904-023-02668-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02668-y

Keywords

Navigation