Skip to main content
Log in

Improved Catalytic Activity of Composite Beads Calcium Alginate@MIL-101@Fe3O4 Towards Reduction Toxic Organic Dyes

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The defiance of this study was to explore the potential of alginate/MIL-101 beads containing Fe3O4 nanoparticles as a catalyst for the reduction of dyes. The Fe3O4@MIL-101 magnetic composite was obtained by the mechanical method and then encapsulated using calcium alginate (CA) as a crosslinked matrix. The Fe3O4(X)@MIL-101/CA composites beads at different content (X) of Fe3O4 nanoparticles were evaluated for the catalytic reduction of methylene blue (MB) and orange G (OG). The aerogel beads have completed the MB dye reduction after 7 min with a rate constant of 0.962 min–1. This strong activity is assigned to the synergistic effect between Cr containing MIL-101 the Fe3O4 particles and the hydrides formed on the catalyst surface. The obtained optimal conditions of MB dye reduction were used for the reduction of OG dye in simple and binary system.The best catalyst M(1)@MIL-101/CA showed a high affinity via MB dye in a binary system. Then was easily recovered by an external magnetic field and reused for 4 cycles. On the other hand, the time of the catalytic activity clearly increased in its 4th reuse in the reduction of MB dye but did not affect the efficiency of catalytic reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wang L, Zeng T, Liao G, Cheng Q, Pan Z (2019) Syntheses, structures and catalytic mechanisms of three new MOFs for aqueous Cr(VI) reduction and dye degradation under UV light. Polyhedron 157:152–162. https://doi.org/10.1016/j.poly.2018.09.064

    Article  CAS  Google Scholar 

  2. Hynes NRJ, Kumar JS, Kamyab H, Sujana JAJ, Al-Khashman OA, Kuslu Y, Ene A, Kumar BS (2020) Modern enabling techniques and adsorbents based dye removal with sustainability concerns in textile industrial sector: a comprehensive review. J Clean Prod 272:122636. https://doi.org/10.1016/j.jclepro.2020.122636

    Article  CAS  Google Scholar 

  3. Farooqi ZH, Sultana H, Begum R, Usman M, Ajmal M, Nisar J, Irfan A, Azam M (2020) Catalytic degradation of malachite green using a crosslinked colloidal polymeric system loaded with silver nanoparticles. Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1779247

    Article  Google Scholar 

  4. Shahid M, Farooqi ZH, Begum R, Arif M, Wu W, Irfan A (2020) Hybrid microgels for catalytic and photocatalytic removal of nitroarenes and organic dyes from aqueous medium: a review. Crit Rev Anal Chem 50:513–537. https://doi.org/10.1080/10408347.2019.1663148

    Article  CAS  PubMed  Google Scholar 

  5. Iqbal S, Zahoor C, Musaddiq S, Hussain M, Begum R, Irfan A, Azam M, Farooqi ZH (2020) Silver nanoparticles stabilized in polymer hydrogels for catalytic degradation of azo dyes. Ecotoxicol Environ Saf 202. https://doi.org/10.1016/j.ecoenv.2020.110924

    Article  PubMed  Google Scholar 

  6. Shahid M, Farooqi ZH, Begum R, Arif M, Irfan A, Azam M (2020) Extraction of cobalt ions from aqueous solution by microgels for in-situ fabrication of cobalt nanoparticles to degrade toxic dyes: a two fold-environmental application. Chem Phys Lett 754. https://doi.org/10.1016/j.cplett.2020.137645

    Article  Google Scholar 

  7. Hachemaoui M, Molina CB, Belver C, Bedia J, Mokhtar A, Hamacha R, Boukoussa B (2021) Metal-loaded mesoporous MCM-41 for the catalytic wet peroxide oxidation (CWPO) of acetaminophen. Catalysts 11:219. https://doi.org/10.3390/catal11020219

    Article  CAS  Google Scholar 

  8. Mezohegyi G, van der Zee FP, Font J, Fortuny A, Fabregat A (2012) Towards advanced aqueous dye removal processes: a short review on the versatile role of activated carbon. J Environ Manage 102:148–164. https://doi.org/10.1016/j.jenvman.2012.02.021

    Article  CAS  PubMed  Google Scholar 

  9. Cherifi Z, Boukoussa B, Mokhtar A, Hachemaoui M, Zeggai FZFZ, Zaoui A, Bachari K, Meghabar R (2020) Preparation of new nanocomposite poly(GDMA)/mesoporous silica and its adsorption behavior towards cationic dye. React Funct Polym 153. https://doi.org/10.1016/j.reactfunctpolym.2020.104611

    Article  Google Scholar 

  10. Hachemaoui M, Boukoussa B, Mokhtar A, Mekki A, Beldjilali M, Benaissa M, Zaoui F, Hakiki A, Chaibi W, Sassi M, Hamacha R (2020) Dyes adsorption, antifungal and antibacterial properties of metal loaded mesoporous silica: effect of metal and calcination treatment. Mater Chem Phys 256. https://doi.org/10.1016/j.matchemphys.2020.123704

    Article  Google Scholar 

  11. Mokhtar A, Abdelkrim S, Sardi A, Benyoub A, Besnaci H, Cherrak R, Hadjel M, Boukoussa B (2020) Preparation and characterization of anionic composite hydrogel for dyes adsorption and filtration: non-linear isotherm and kinetics modeling. J Polym Environ 28:1710–1723. https://doi.org/10.1007/s10924-020-01719-6

  12. Zaoui F, Sebba FZ, Liras M, Sebti H, Hachemaoui M, Mokhtar A, Beldjilali M, Bounaceur B, Boukoussa B (2021) Ultrasonic preparation of a new composite poly(GMA)@Ru/TiO2@Fe3O4: application in the catalytic reduction of organic pollutants. Mater Chem Phys 260:124146. https://doi.org/10.1016/j.matchemphys.2020.124146

    Article  CAS  Google Scholar 

  13. Boukoussa B, Mokhtar A, El-Guerdaoui A, Hachemoui M, Ouachtak H, Abdelkrim S, Addi AA, Babou S, Boudina B, Bengueddach A, Hamacha R (2021) Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. J. Mol. Liq. 115976. https://doi.org/10.1016/j.molliq.2021.115976

    Article  Google Scholar 

  14. Naseem K, Farooqi ZH, Begum R, Irfan A (2018) Removal of Congo red dye from aqueous medium by its catalytic reduction using sodium borohydride in the presence of various inorganic nano-catalysts: A review. J Clean Prod 187:296–307. https://doi.org/10.1016/j.jclepro.2018.03.209

    Article  CAS  Google Scholar 

  15. Khan MSJ, Kamal T, Ali F, Asiri AM, Khan SB (2019) Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. Int J Biol Macromol 132:772–783. https://doi.org/10.1016/j.ijbiomac.2019.03.205

    Article  CAS  PubMed  Google Scholar 

  16. Naseem K, Farooqi ZH, Rehman MZU, Rehman MAU, Ghufran M (2019) Microgels as efficient adsorbents for the removal of pollutants from aqueous medium. Rev Chem Eng 35:285–309. https://doi.org/10.1515/revce-2017-0042

    Article  CAS  Google Scholar 

  17. Kamal T, Khan MSJ, Khan SB, Asiri AM, Chani MTS, Ullah MW (2020) Silver nanoparticles embedded in gelatin biopolymer hydrogel as catalyst for reductive degradation of pollutants. J Polym Environ 28:399–410. https://doi.org/10.1007/s10924-019-01615-8

    Article  CAS  Google Scholar 

  18. Khan SMB, Khan MSJ, Kamal T, Asiri AM, Bakhsh EM (2020) Polymer supported metallic nanoparticles as a solid catalyst for the removal of organic pollutants. Cellulose 27:5907–5921. https://doi.org/10.1007/s10570-020-03193-8

  19. Benhadria N, Hachemaoui M, Zaoui F, Mokhtar A, Boukreris S, Attar T, Belarbi L, Boukoussa B (2021) Catalytic reduction of methylene blue dye by copper oxide nanoparticles. J Clust Sci 1–12. https://doi.org/10.1007/s10876-020-01950-0

    Article  Google Scholar 

  20. Hachemaoui M, Boukoussa B, Ismail I, Mokhtar A, Taha I, Iqbal J, Hacini S, Bengueddach A, Hamacha R (2021) CuNPs-loaded amines-functionalized-SBA-15 as effective catalysts for catalytic reduction of cationic and anionic dyes. Colloids Surfaces A. https://doi.org/10.1016/j.colsurfa.2021.126729

    Article  Google Scholar 

  21. Mekki A, Mokhtar A, Hachemaoui M, Beldjilali M, Meliani MF, BZahmani HH, Hacini S, Boukoussa B (2021) Fe and Ni nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants. Microporous Mesoporous Mater. 310:110597. https://doi.org/10.1016/j.micromeso.2020.110597

    Article  CAS  Google Scholar 

  22. Zi G, Yan Z, Wang Y, Chen Y, Guo Y, Yuan F, Gao W, Wang Y, Wang J (2015) Catalytic hydrothermal conversion of carboxymethyl cellulose to value-added chemicals over metal-organic framework MIL-53(Al). Carbohydr Polym 115:146–151. https://doi.org/10.1016/j.carbpol.2014.08.065

    Article  CAS  PubMed  Google Scholar 

  23. El-Shahat M, Abdelhamid AE, Abdelhameed RM (2020) Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan. Carbohydr Polym 231:115742. https://doi.org/10.1016/j.carbpol.2019.115742

    Article  CAS  PubMed  Google Scholar 

  24. Wang H, Pei Y, Qian X, An X (2020) Eu-metal organic framework@TEMPO-oxidized cellulose nanofibrils photoluminescence film for detecting copper ions. Carbohydr Polym 236:116030. https://doi.org/10.1016/j.carbpol.2020.116030

    Article  CAS  PubMed  Google Scholar 

  25. Li B, Wen H-M, Zhou W, Chen B (2014) Porous Metal−Organic Frameworks for Gas Storage and Separation: What, How, and Why? ACS Publ 5:3468–3479. https://doi.org/10.1021/jz501586e

    Article  CAS  Google Scholar 

  26. Valizadeh B, Nguyen TN, Smit B, Stylianou KC (2018) Porous metal–organic framework@polymer beads for iodine capture and recovery using a gas-sparged column. Adv Funct Mater. https://doi.org/10.1002/adfm.201801596

    Article  Google Scholar 

  27. Gascon J, Corma A, Kapteijn F, Llabrés FX, Xamena I (2014) Metal organic framework catalysis: Quo vadis? ACS Catal 4:361–378. https://doi.org/10.1021/cs400959k

    Article  CAS  Google Scholar 

  28. Lajevardi A, Yaraki MT, Masjedi A, Nouri A, Sadr MH (2019) Green synthesis of MOF@Ag nanocomposites for catalytic reduction of methylene blue. J Mol Liq 276:371–378

    Article  CAS  Google Scholar 

  29. Ai L, Zhang C, Li L, Jiang J (2014) Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B 148–149:191–200. https://doi.org/10.1016/j.apcatb.2013.10.056

    Article  CAS  Google Scholar 

  30. Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J (2017) Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Appl Catal B 202:653–663. https://doi.org/10.1016/j.apcatb.2016.09.073

    Article  CAS  Google Scholar 

  31. Kohantorabi M, Gholami MR (2017) MXNi100-X (M = Ag, and Co) nanoparticles supported on CeO2 nanorods derived from Ce-metal organic frameworks as an effective catalyst for reduction of organic pollutants: Langmuir-Hinshelwood kinetics and mechanism. New J Chem 41:10948–10958. https://doi.org/10.1039/c7nj03009f

  32. Khan NA, Kang IJ, Seok HY, Jhung SH (2011) Facile synthesis of nano-sized metal-organic frameworks, chromium-benzenedicarboxylate, MIL-101. Chem Eng J 166:1152–1157. https://doi.org/10.1016/j.cej.2010.11.098

  33. Bhattacharjee S, Chen C, Ahn WS (2014) Chromium terephthalate metal-organic framework MIL-101: Synthesis, functionalization, and applications for adsorption and catalysis. RSC Adv 4:52500–52525. https://doi.org/10.1039/c4ra11259h

    Article  CAS  Google Scholar 

  34. Yadav M, Aijaz A, Xu Q (2012) Highly catalytically active palladium nanoparticles incorporated inside metal-organic framework pores by double solvents method. Funct Mater Lett. https://doi.org/10.1142/S1793604712500397

    Article  Google Scholar 

  35. Zhuo N, Lan Y, Yang W, Yang Z, Li X, Zhou X, Liu Y, Shen J, Zhang X (2017) Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep Purif Technol 177:272–280. https://doi.org/10.1016/j.seppur.2016.12.041

    Article  CAS  Google Scholar 

  36. Luo Z, Chen H, Wu S, Yang C, Cheng J (2019) Enhanced removal of bisphenol A from aqueous solution by aluminum-based MOF/sodium alginate-chitosan composite beads. Chemosphere 237. https://doi.org/10.1016/j.chemosphere.2019.124493

    Article  PubMed  Google Scholar 

  37. Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci 135:9–15. https://doi.org/10.1016/j.clay.2016.08.031

    Article  CAS  Google Scholar 

  38. Shao ZJ, Huang XL, Yang F, Zhao WF, Zhou XZ, Zhao CS (2018) Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. Carbohydr. Polym. 187:85–93. https://doi.org/10.1016/j.carbpol.2018.01.092

    Article  CAS  PubMed  Google Scholar 

  39. Vernon RB, Gooden MD, Preisinger A, Gebe JA (2018) Controlled release of monoclonal antibodies from poly-L-lysine-coated alginate spheres within a scaffolded implant mitigates autoimmune responses to transplanted islets and limits systemic antibody toxicity. Mater Sci Eng C 93:390–398. https://doi.org/10.1016/j.msec.2018.07.056

    Article  CAS  Google Scholar 

  40. Djelad A, Mokhtar A, Khelifa A, Bengueddach A, Sassi M (2019) Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. Int J Biol Macromol 139:944–954. https://doi.org/10.1016/j.ijbiomac.2019.08.068

    Article  CAS  PubMed  Google Scholar 

  41. Hachemaoui M, Mokhtar A, Mekki A, Zaoui F, Abdelkrim S, Hacini S, Boukoussa B (2020) Composites beads based on Fe3O4@MCM-41 and calcium alginate for enhanced catalytic reduction of organic dyes. Int J Biol Macromol 164:468–479. https://doi.org/10.1016/j.ijbiomac.2020.07.128

    Article  CAS  PubMed  Google Scholar 

  42. Soumia A, Adel M, Amina S, Bouhadjar B, Amal D, Farouk Z, Abdelkader B, Mohamed S (2020) Fe3O4-alginate nanocomposite hydrogel beads material: One-pot preparation, release kinetics and antibacterial activity. Int J Biol Macromol 145:466–475. https://doi.org/10.1016/j.ijbiomac.2019.12.211

    Article  CAS  PubMed  Google Scholar 

  43. Tian X, Zhu H, Meng X, Wang J, Zheng C, Xia Y, Xiong Z (2020) Amphiphilic calcium alginate carbon aerogels: broad-spectrum adsorbents for ionic and solvent dyes with multiple functions for decolorized oil-water separation. ACS Sustain Chem Eng 8:12755–12767. https://doi.org/10.1021/acssuschemeng.0c00129

    Article  CAS  Google Scholar 

  44. Li Y, Li G, Li W, Yang F, Liu H (2015) Greenly Synthesized Gold-Alginate Nanocomposites Catalyst for Reducing Decoloration of Azo-Dyes. NANO. https://doi.org/10.1142/S1793292015501088

    Article  Google Scholar 

  45. Gupta VK, Yola ML, Eren T, Kartal F, Çaǧlayan MO, Atar N (2014) Catalytic activity of Fe@Ag nanoparticle involved calcium alginate beads for the reduction of nitrophenols. J Mol Liq 190:133–138. https://doi.org/10.1016/j.molliq.2013.10.022

    Article  CAS  Google Scholar 

  46. Argoub A, Ghezini R, Bachir C, Boukoussa B, Khelifa A, Bengueddach A, Weidler PG, Hamacha R (2018) Synthesis of MIL-101@g-C3N4 nanocomposite for enhanced adsorption capacity towards CO2. J Porous Mater 25:199–205. https://doi.org/10.1007/s10934-017-0433-y

    Article  CAS  Google Scholar 

  47. Zhou L, Wang Y, Liu Z, Huang Q (2006) Carboxymethyl chitosan-Fe3O4 nanoparticles: preparation and adsorption behavior toward Zn2+ Ions. Acta Phys Chim Sin 22:1342–1346. https://doi.org/10.1016/S1872-1508(06)60067-3

    Article  CAS  Google Scholar 

  48. Wang WJ, Cui QY, Qin T, Sun HH (2014) Preparation of Fe3O4@SiO2@chitosan for the adsorption of malachite green dye. IOP Conf Ser Earth Environ Sci 186:012014. https://doi.org/10.1088/1755-1315/186/3/012014

  49. Li J, Ji H, Xu Y, Zhang J, Yan Y (2020) Three-dimensional graphene supported Fe3O4 coated by polypyrrole toward enhanced stability and microwave absorbing properties. J Mater Res Technol 9:762–772. https://doi.org/10.1016/j.jmrt.2019.11.016

    Article  CAS  Google Scholar 

  50. Fang Y, Zhao G, Dai W, Ma L, Ma N (2017) Enhanced adsorption of rubidium ion by a phenol@MIL-101(Cr) composite material. Microporous Mesoporous Mater 251:51–57. https://doi.org/10.1016/j.micromeso.2017.05.048

    Article  CAS  Google Scholar 

  51. Suresh M, David Raju B, Rama Rao KS, Raveendranath Reddy K, Kantam ML, Srinivasu P (2014) Metal organic framework MIL-101(Cr) for dehydration reactions. J Chem Sci 126:527–532. https://doi.org/10.1007/s12039-014-0590-3

  52. Zhao C, Dong P, Liu Z, Wu G, Wang S, Wang Y, Liu F (2017) Facile synthesis of Fe3O4/MIL-101 nanocomposite as an efficient heterogeneous catalyst for degradation of pollutants in Fenton-like system. RSC Adv 7:24453–24461. https://doi.org/10.1039/c7ra01883e

    Article  CAS  Google Scholar 

  53. Said AA, Hassan RM (1993) Thermal decomposition of some divalent metal alginate gel compounds. Polym Degrad Stab 39:393–397. https://doi.org/10.1016/0141-3910(93)90015-B

    Article  CAS  Google Scholar 

  54. Sun X, Hu D, Yang LY, Wang N, Wang YG, Ouyang XK (2019) Efficient adsorption of Levofloxacin from aqueous solution using calcium alginate/metal organic frameworks composite beads. J Sol-Gel Sci Technol 91:353–363. https://doi.org/10.1007/s10971-019-05001-7

  55. Wang R, Wu L, Chica B, Gu L, Xu G, Yuan Y (2017) Ni(dmgH)2 complex coupled with metal-organic frameworks MIL-101(Cr) for photocatalytic H2 evolution under visible light irradiation. J Mater 3:58–62. https://doi.org/10.1016/j.jmat.2016.11.001

    Article  CAS  Google Scholar 

  56. Yao T, Cui T, Wu J, Chen Q, Yin X, Cui F, Sun K (2012) Preparation of acid-resistant core/shell Fe 3O 4@C materials and their use as catalyst supports. Carbon N Y 50:2287–2295. https://doi.org/10.1016/j.carbon.2012.01.048

    Article  CAS  Google Scholar 

  57. Xu B, Li X, Chen Z, Zhang T, Li C (2018) Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol: Synergistic effect between Pd and MIL-100(Fe). Microporous Mesoporous Mater 255:1–6. https://doi.org/10.1016/j.micromeso.2017.07.008

    Article  CAS  Google Scholar 

  58. Baye AF, Appiah-Ntiamoah R, Kim H (2020) Synergism of transition metal (Co, Ni, Fe, Mn) nanoparticles and “active support” Fe3O4@C for catalytic reduction of 4-nitrophenol. Sci Total Environ 712. https://doi.org/10.1016/j.scitotenv.2019.135492

    Article  PubMed  Google Scholar 

  59. Begum R, Najeeb J, Sattar A, Naseem K, Irfan A, Al-Sehemi AG, Farooqi ZH (2020) Chemical reduction of methylene blue in the presence of nanocatalysts: a critical review. Rev Chem Eng 36:749–770. https://doi.org/10.1515/revce-2018-0047

    Article  CAS  Google Scholar 

  60. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. https://doi.org/10.1016/j.micron.2013.10.006

  61. Gao C, Da An Q, Xiao Z, Zhai S, Zhai B, Shi Z (2017) Highly recyclable Ag NPs/alginate composite beads prepared: Via one-pot encapsulation method for efficient continuous reduction of p -nitrophenol. New J Chem 41:13327–13335. https://doi.org/10.1039/c7nj03467a

    Article  CAS  Google Scholar 

  62. Bashir MS, Jiang X, Kong XZ (2020) Porous polyurea microspheres with Pd immobilized on surface and their catalytic activity in 4-nitrophenol reduction and organic dyes degradation. Eur Polym J 129. https://doi.org/10.1016/j.eurpolymj.2020.109652

    Article  Google Scholar 

  63. Bokare AD, Chikate RC, Rode CV, Paknikar KM (2008) Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Appl Catal B 79:270–278. https://doi.org/10.1016/j.apcatb.2007.10.033

    Article  CAS  Google Scholar 

  64. Das R, Sypu VS, Paumo HK, Bhaumik M, Maharaj V, Maity A (2019) Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes. Appl Catal B 244:546–558. https://doi.org/10.1016/j.apcatb.2018.11.073

    Article  CAS  Google Scholar 

  65. Fu Y, Qin L, Huang D, Zeng G, Lai C, Li B, He J, Yi H, Zhang M, Cheng M, Wen X (2019) Chitosan functionalized activated coke for Au nanoparticles anchoring: green synthesis and catalytic activities in hydrogenation of nitrophenols and azo dyes. Appl Catal B 255. https://doi.org/10.1016/j.apcatb.2019.05.042

    Article  Google Scholar 

  66. Cui X, Zheng Y, Tian M, Dong Z (2017) Palladium nanoparticles supported on SiO2@Fe3O4@m-MnO2 mesoporous microspheres as a highly efficient and recyclable catalyst for hydrodechlorination of 2,4-dichlorophenol and reduction of nitroaromatic compounds and organic dyes. Mol Catal 433:202–211. https://doi.org/10.1016/j.mcat.2017.02.006

    Article  CAS  Google Scholar 

  67. Zhu M, Wang C, Meng D, Diao G (2013) In situ synthesis of silver nanostructures on magnetic Fe3O 4@C core-shell nanocomposites and their application in catalytic reduction reactions. J Mater Chem A 1:2118–2125. https://doi.org/10.1039/c2ta00669c

    Article  CAS  Google Scholar 

  68. He C, Liu Z, Lu Y, Huang L, Yang Y (2016) Graphene-supported silver nanoparticles with high activities toward chemical catalytic reduction of methylene blue and electrocatalytic oxidation of hydrazine. Int J Electrochem Sci 11:9566–9574. https://doi.org/10.20964/2016.11.72

  69. Cui K, Yan B, Xie Y, Qian H, Wang X, Huang Q, He Y, Jin S, Zeng H (2018) Regenerable urchin-like Fe3O4@PDA-Ag hollow microspheres as catalyst and adsorbent for enhanced removal of organic dyes. J Hazard Mater 350:66–75. https://doi.org/10.1016/j.jhazmat.2018.02.011

    Article  CAS  PubMed  Google Scholar 

  70. Chung DCK, Lin ES, Peng L, Jiang X, Ong JW, Abid HA, Song Z, Liew OW, Ng TW (2021) Efficient drop reactor processing of methylene blue degradation with silver nanowire catalysts. Colloids Surfaces A 610:125749. https://doi.org/10.1016/j.colsurfa.2020.125749

    Article  CAS  Google Scholar 

  71. Kurtan U, Baykal A, Sözeri H (2015) Recyclable Fe3O4@Tween20@Ag nanocatalyst for catalytic degradation of azo dyes. J Inorg Organomet Polym Mater 25:921–929. https://doi.org/10.1007/s10904-015-0190-9

    Article  CAS  Google Scholar 

  72. Li C, Sun J, Chen D, Han G, Yu S, Kang S, Mei L (2016) Ag-decorated Fe3O4@SiO2 nanorods: synthesis, characterization, and applications in degradation of organic dyes. J Nanomater. https://doi.org/10.1155/2016/5837406

    Article  Google Scholar 

  73. Fairuzi AA, Bonnia NN, Akhir RM, Abrani MA, Akil HM (2018) Degradation of methylene blue using silver nanoparticles synthesized from imperata cylindrica aqueous extract. IOP Conf Ser Earth Environ Sci 105:12018. https://doi.org/10.1088/1755-1315/105/1/012018

  74. Atta AM, Gafer AK, Al-Lohedan HA, Abdullah MM, Ezzat AO (2019) Preparation of magnetite and silver poly(2-acrylamido-2-methyl propane sulfonic acid- co -acrylamide) nanocomposites for adsorption and catalytic degradation of methylene blue water pollutant. Polym Int 68:1164–1177. https://doi.org/10.1002/pi.5809

    Article  CAS  Google Scholar 

  75. Zheng Y, Wang Z, Peng F, Fu L (2017) Biosynthesis of silver nanoparticles by Plectranthus amboinicus leaf extract and their catalytic activity towards methylene blue degradation. Rev Mex Ing Quim 16:41–45

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank DGRSDT and the Ministry of Education and Scientific Research of Algeria for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammed Hachemaoui, Adel Mokhtar or Bouhadjar Boukoussa.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachemaoui, M., Mokhtar, A., Abdelkrim, S. et al. Improved Catalytic Activity of Composite Beads Calcium Alginate@MIL-101@Fe3O4 Towards Reduction Toxic Organic Dyes. J Polym Environ 29, 3813–3826 (2021). https://doi.org/10.1007/s10924-021-02177-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02177-4

Keywords

Navigation