Skip to main content
Log in

Highly Microporous Nitrogen-Doped Carbon Derived from Silicon Oxycarbide Ceramics for Supercapacitor Application

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Highly microporous nitrogen-doped silicon oxycarbide (SiOC) derived materials were obtained by solvothermal process of vinyltriethoxysilane in urea solution and followed by HF etching. SiOC ceramics synthesized at 1200 oC exhibits good chemical durability in HF solution due to the formation of more SiO2C2 unit. Increasing the pyrolysis temperature not only increases the specific surface area and pore volume of SiOC derived materials, but also generates more pyridinic N and pyrrolic N functionalities. Furthermore, after HF etching, only incorporation of fluorine in SiOC ceramics (F − Si bond) and no C − F bond is found. The phase separation occurs during the pyrolysis process, and the generation of SiC is mainly caused by the carbothermal reduction reaction between SiO2 and free C (Cfree). The thermogravimetric analysis shows the oxidation resistance of SiC is superior to that of SiOC and C, while SiOC has better thermal stability than C. Both the high specific surface area, micropore volume and N-doping contribute the good supercapacitor performance. SiOC derived carbon materials with a high specific surface area of 1109.0 m2g− 1 and pore volume of 0.77 cm3g− 1 exhibit the specific capacitance of 272.2 Fg− 1 at the current density of 0.2 Ag− 1 in 6 M KOH aqueous electrolyte and good cycling stability of 89.7% retention after 10,000 cycles at 5 Ag− 1. In addition, the specific capacitance can reach up to 33.2 F g− 1 at 0.2 A g− 1 for a symmetrical supercapacitor, and a stable capacitance of 29.1 F g− 1 retains over 6000 cycles at 1 A g− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. U. Akram, M. Nadarajah, R. Shah, F. Milano, Renew. Sus Energ. Rev. 120, 109626 (2020)

    Article  Google Scholar 

  2. Y.X. Tong, X.M. Li, L.J. Xie, F.Y. Su, J.P. Li, G.H. Sun, Y.D. Gao, N. Zhang, Q. Wei, C.M. Chen, Energy Storage Mater 3, 140–148 (2016)

    Article  Google Scholar 

  3. G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. B. Hu, X.H. Shang, P.F. Nie, B.S. Zhang, K.B. Xu, J.M. Yang, J.S. Qiu, J.Y. Liu, ACS Appl. Energy Mater. 4, 6991–7001 (2021)

    Article  CAS  Google Scholar 

  5. H.D. Tian, Q.Q. Fang, R.R. Cheng, L.L. Li, W. Zhang, S.L. Ran, L.B. Ma, Y.H. Lv, Colloid Surf. A 614, 126172 (2021)

    Article  CAS  Google Scholar 

  6. Y.C. Jiang, Z.F. He, Y.Y. Du, J.F. Wan, Y.F. Liu, F.W. Ma, J. Colloid Interf Sci. 602, 721–731 (2021)

    Article  CAS  Google Scholar 

  7. M. Yuan, T.C. Liu, Q. Shi, J.X. Dong, Chem. Eng. J. 428, 132016 (2022)

    Article  CAS  Google Scholar 

  8. H.Z. He, Y. Zhang, P. Wang, D.M. Hu, Micropor. Mesopor. Mat 317, 110998 (2021)

    Article  CAS  Google Scholar 

  9. B.G. Liu, R. Shi, X.C. Ma, R.F. Chen, K. Zhou, X. Xu, P. Sheng, Z. Zeng, L.Q. Li, Carbon 181, 270–279 (2021)

    Article  CAS  Google Scholar 

  10. L.Q. Duan, Q.S. Ma, L. Mei, Z.H. Chen, Micropor. Mesopor. Mat 202, 97–105 (2015)

    Article  CAS  Google Scholar 

  11. A. Saha, R. Raj, D.L. Williamson, J. Am. Ceram. Soc. 89, 2188–2195 (2006)

    CAS  Google Scholar 

  12. K. Bawane, D. Erb, K. Lu, J. Eur. Ceram. Soc. 39, 2846–2854 (2019)

    Article  CAS  Google Scholar 

  13. P. Colombo, G. Mera, R. Riedel, G.D. Sorarù, J. Am. Ceram. Soc. 93, 1805–1837 (2010)

    CAS  Google Scholar 

  14. L.Q. Duan, Q.S. Ma, Z.H. Chen, Corros. Sci. 94, 237–244 (2015)

    Article  Google Scholar 

  15. A. Meier, M. Weinberger, K. Pinkert, M. Oschatz, S. Paasch, L. Giebeler, H. Althues, E. Brunner, J. Eckert, S. Kaskel, Micropor. Mesopor. Mat 188, 140–148 (2014)

    Article  CAS  Google Scholar 

  16. C. Vakifahmetoglu, V. Presser, S.H. Yeon, P. Colombo, Y. Gogotsi, Micropor. Mesopor. Mat 144, 105–112 (2011)

    Article  CAS  Google Scholar 

  17. M.A. Mazo, M.T. Colomer, A. Tamayo, J. Rubio, Micropor. Mesopor. Mat 330, 111604 (2022)

    Article  CAS  Google Scholar 

  18. I.P. Swain, N. Sadual, S.K. Behera, Open Ceram. 6, 100116 (2021)

    Article  CAS  Google Scholar 

  19. M.A. Mazo, A. Tamayo, J. Rubio, Micropor. Mesopor. Mat 289, 109614 (2019)

    Article  CAS  Google Scholar 

  20. H.Y. Sun, J.M. Pan, X.H. Yan, W. Shen, W.Q. Zhong, X.N. Cheng, Ceram. Int. 45, 24802–24810 (2019)

    Article  CAS  Google Scholar 

  21. J.M. Pan, W.Q. Zhong, Z.M. Gao, X.X. Yang, Y.H. Zhang, Y. Guan, X.H. Yan, Ceram. Int. 47, 27833–27842 (2021)

    Article  CAS  Google Scholar 

  22. Y. Feng, N.N. Feng, Y.Z. Wei, Y. Bai, J. Mater. Chem. A 2, 4168 (2014)

    Article  CAS  Google Scholar 

  23. L. Ribeiro, A. Bezerra, C. Gervais, S. Bernard, R. Machado, G. Motz, J. Eur. Ceram. Soc. 41, 3285–3291 (2021)

    Article  CAS  Google Scholar 

  24. K.D. Xia, C.C. Li, H. Zhang, S.Y. Zhao, W.C. Li, F. Han, Y.W. Li, X. Liu, Ceram. Int. 49, 4082–4090 (2023)

    Article  CAS  Google Scholar 

  25. K.D. Xia, X. Liu, H. Liu, W.C. Li, Y.W. Li, F. Han, L.Y. Duan, Z.Y. Hou, Ceram. Int. 48, 19232–19239 (2022)

    Article  CAS  Google Scholar 

  26. W. Zeng, H.W. Huang, L.J. Song, X. Jiang, X.Y. Zhang, J. Coat. Technol. Res. 17, 181–191 (2019)

    Article  Google Scholar 

  27. I. Penso, E.A. Cechinatto, G. Machado, C. Luvison, C.H. Wanke, O. Bianchi, M.R.F. Soares, J. Non-Cryst Solids 428, 82–89 (2015)

    Article  CAS  Google Scholar 

  28. L.T. Yan, G. Chen, S. Tan, M. Zhou, G.F. Zou, S.G. Deng, S.N. Smirnov, H.M. Luo, ACS appl. Mater. Interfaces 7, 24212–24217 (2015)

    Article  CAS  PubMed  Google Scholar 

  29. M.A. Mazo, A. Tamayo, J. Rubio, J. Eur. Ceram. Soc. 36, 2443–2452 (2016)

    Article  CAS  Google Scholar 

  30. C. Vakifahmetoglu, M. Buldu, A. Karakuscu, A. Ponzoni, D. Assefa, G.D. Soraru, J. Eur. Ceram. Soc. 35, 4447–4452 (2015)

    Article  CAS  Google Scholar 

  31. H.Y. Xue, C.Y. Wang, M. Asad, J.J. Yu, Y. Wang, X.F. Xie, J. Sun, J. Inorg. Mater. 37, 865–872 (2022)

    Google Scholar 

  32. F. Kolář, V. Machovič, J. Svítilová, L. Borecká, Mater. Chem. Phys. 86, 88–98 (2004)

    Article  Google Scholar 

  33. Z.Y. Sang, D. Su, J.S. Wang, Y. Liu, H.M. Ji, Chem. Eng. J. 381, 122677 (2020)

    Article  CAS  Google Scholar 

  34. S.X. Jiang, M.F. Chen, X.Y. Wang, Y. Zhang, C. Huang, Y.P. Zhang, Y. Wang, Chem. Eng. J. 355, 478–486 (2019)

    Article  CAS  Google Scholar 

  35. J. Yang, H.L. Wu, M. Zhu, W.J. Ren, Y. Lin, H.B. Chen, F. Pan, Nano Energy 33, 453–461 (2017)

    Article  CAS  Google Scholar 

  36. R.J. Dubey, P.V.W. Sasikumar, F. Krumeich, G. Blugan, J. Kuebler, K.V. Kravchyk, T. Graule, M.V. Kovalenko, Adv. Sci. 6, 1901220 (2019)

    Article  CAS  Google Scholar 

  37. W. Fortuniak, P. Pospiech, U. Mizerska, J. Chojnowski, S. Slomkowski, A. Nyczyk-Malinowska, A. Wojteczko, E. Wisla-Walsh, M. Hasik, Ceram. Int. 44, 374–383 (2018)

    Article  CAS  Google Scholar 

  38. M. Graczyk-Zajac, D. Vrankovic, P. Waleska, C. Hess, P.V. Sasikumar, S. Lauterbach, H.J. Kleebe, G.D. Sorarù, J. Mater. Chem. A 6, 93–103 (2018)

    Article  CAS  Google Scholar 

  39. K.K. Matthias Thommes, A.V. Neimark, J.P. Olivier, Francisco Rodriguez-Reinoso, Jean Rouquerol, Kenneth S.W., Sing, Pure Appl. Chem. 87, 1051–1069 (2015)

  40. M. Zhang, H.L. Ling, W.G. Zhang, H.G. Bian, H. Lin, T. Wang, Z.J. Li, A. Meng, Mater. Charact. 180, 111413 (2021)

    Article  CAS  Google Scholar 

  41. C. Liu, X.Y. Meng, X.H. Zhang, C.Q. Hong, J.C. Han, W.B. Han, B.S. Xu, S. Dong, S.Y. Du, Ceram. Int. 41, 11091–11096 (2015)

    Article  CAS  Google Scholar 

  42. M.H. Su, C. He, K. Shih, Ceram. Int. 42, 14793–14804 (2016)

    Article  CAS  Google Scholar 

  43. Y.T. Tu, Z.P. Peng, J.C. Huang, X.N. Wu, L.J. Kong, Z.X. Liang, L.X. Yang, Z.J. Lin, Ind. Eng. Chem. Res. 59, 1809–1821 (2020)

    Article  CAS  Google Scholar 

  44. X.P. Wang, T.T. Lim, Appl. Catal. A-Gen 399, 233–241 (2011)

    Article  CAS  Google Scholar 

  45. P. Zeng, L.W. Huang, X.L. Zhang, R.X. Zhang, L. Wu, Y.G. Chen, Chem. Eng. J. 349, 327–337 (2018)

    Article  CAS  Google Scholar 

  46. B. Yin, X.X. Cao, A.Q. Pan, Z.G. Luo, S. Dinesh, J.D. Lin, Y. Tang, S.Q. Liang, G.Z. Cao, Adv. Sci. 5, 1800829 (2018)

    Article  Google Scholar 

  47. K.P. Wu, H. Yang, L.P. Jia, Y. Pan, Y. Hao, K.B. Zhang, K. Du, G.R. Hu, Green. Chem. 21, 1472–1483 (2019)

    Article  CAS  Google Scholar 

  48. Z. Wu, X.Q. Cheng, D. Tian, T.T. Gao, W.D. He, C.H. Yang, Chem. Eng. J. 375, 121997 (2019)

    Article  CAS  Google Scholar 

  49. C. Chandra, J. Kim, Chem. Eng. J. 338, 126–136 (2018)

    Article  CAS  Google Scholar 

  50. C. Ma, Y. Song, J.L. Shi, D.Q. Zhang, X.L. Zhai, M. Zhong, Q.G. Guo, L. Liu, Carbon 51, 290–300 (2013)

    Article  CAS  Google Scholar 

  51. S.B. Mujib, R. Cuccato, S. Mukherjee, G. Franchin, P. Colombo, G. Singh, Ceram. Int. 46, 3565–3573 (2020)

    Article  Google Scholar 

  52. S.B. Mujib, F. Ribot, C. Gervais, G. Singh, RSC Adv. 11, 35440 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. M. Kim, I. Oh, J. Kim, Chem. Eng. J. 289, 170–179 (2016)

    Article  CAS  Google Scholar 

  54. J. Zhao, Y.F. Jiang, H. Fan, M. Liu, O. Zhuo, X.Z. Wang, Q. Wu, L.J. Yang, Y.W. Ma, Z. Hu, Adv. Mater. 29, 1604569 (2017)

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the program of Science and Technology Department of Henan province (222102240087, 222102230035), program of the Education Department of Henan province (23A150023), initiatory financial support from Henan Institute of Science and Technology (HIST, 2018027).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Project administration, Writing-original draft, Funding acquisition: Kedong Xia. Methodology, Validation, Investigation: Yinfeng Cheng, Hui Zhang and Fang Han. Data curation, Visualization: Lingyao Duan. Methodology, Validation, Writing-review and editing: Xiao Liu. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Kedong Xia or Xiao Liu.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, K., Cheng, Y., Zhang, H. et al. Highly Microporous Nitrogen-Doped Carbon Derived from Silicon Oxycarbide Ceramics for Supercapacitor Application. J Inorg Organomet Polym 33, 2023–2034 (2023). https://doi.org/10.1007/s10904-023-02627-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02627-7

Keywords

Navigation