Skip to main content
Log in

Highly nanoporous carbons by single-step organic salt carbonization for high-performance supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

This paper presents the direct synthesis of highly nanoporous carbon materials via the carbonization of sodium oxalate in inert atmosphere without any activation. The carbonization temperature and time are very important for the carbon structures and their electrochemical performance in supercapacitors. The SOC–800–2.5 material derived from sodium oxalate has a high specific surface area of 1456 m2 g−1, and a total of 74 % of the pore volume is composed of mesoporosity with average pore size 3.7 nm, which is ideal for adoption as an electrode for supercapacitors. The SOC–800–2.5 material can also deliver a high specific capacitance of 245 F g−1 at a constant charge/discharge current of 0.7 A g−1. This capacitance is maintained at a value of 173 F g−1 at 10 A g−1. This material also has good cycle stability with over 89.1 % capacitance retention after 5000 cycles when measured in a three-electrode system using 6 M KOH as electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 5:366–377

    Article  Google Scholar 

  2. Morita M, Arizono R, Yoshimoto N, Egashira M (2013) On the electrochemical activation of alkali-treated soft carbon for advanced electrochemical capacitors. J Appl Electrochem 4:447–453

    Google Scholar 

  3. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Sci Mag 5889:651–652

    Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 11:845–854

    Article  Google Scholar 

  5. Miller JR, Outlaw RA, Holloway BC (2010) Graphene double-layer capacitor with ac line-filtering performance. Science 5999:1637–1639

    Article  Google Scholar 

  6. Zhang G, Lou XWD (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 7:976–979

    Google Scholar 

  7. Wei L, Sevilla M, Fuertes AB, Mokaya R, Yushin G (2011) Hydrothermal carbonization of abundant renewable natural organic chemicals for high-performance supercapacitor electrodes. Adv Energy Mater 3:356–361

    Article  Google Scholar 

  8. Kishore B, Shanmughasundaram D, Penki TR, Munichandraiah N (2014) Coconut kernel-derived activated carbon as electrode material for electrical double-layer capacitors. J Appl Electrochem 8:903–916

    Article  Google Scholar 

  9. Zhao X, Luo H, Du K, Zhang F, Li Y (2014) Application of attapulgite/maltose system on mesoporous carbon material preparation for electrochemical capacitors. J Appl Electrochem 6:719–725

    Article  Google Scholar 

  10. Zhang L, Jiang J, Holm N, Chen F (2014) Mini-chunk biochar supercapacitors. J Appl Electrochem 10:1145–1151

    Article  Google Scholar 

  11. Portet C, Yang Z, Korenblit Y, Gogotsi Y, Mokaya R, Yushin G (2009) Electrical double-layer capacitance of zeolite-templated carbon in organic electrolyte. J Electrochem Soc 1:A1

    Article  Google Scholar 

  12. Portet C, Yushin G, Gogotsi Y (2007) Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 13:2511–2518

    Article  Google Scholar 

  13. Ania CO, Khomenko V, Raymundo-Piñero E, Parra JB, Beguin F (2007) The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template. Adv Funct Mater 11:1828–1836

    Article  Google Scholar 

  14. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P, Taberna PL (2006) Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 5794:1760–1763

    Article  Google Scholar 

  15. Gu W, Yushin G (2014) Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. Wiley Interdiscip Rev 5:424–473

    Google Scholar 

  16. Salitra G, Soffer A, Eliad L, Cohen Y, Aurbach D (2000) Carbon electrodes for double-layer capacitors I. Relations between ion and pore dimensions. J Electrochem Soc 7:2486–2493

    Article  Google Scholar 

  17. Raymundo-Pinero E, Kierzek K, Machnikowski J, Béguin F (2006) Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 12:2498–2507

    Article  Google Scholar 

  18. Ahmadpour A, Do D (1996) The preparation of active carbons from coal by chemical and physical activation. Carbon 4:471–479

    Article  Google Scholar 

  19. López-Ramón M, Moreno-Castilla C, Rivera-Utrilla J, Hidalgo-Alvarez R (1993) Activated carbons from a subbituminous coal: pore texture and electrokinetic properties. Carbon 5:815–819

    Article  Google Scholar 

  20. Maciá-Agulló JA, Moore BC, Cazorla-Amorós D, Linares-Solano A (2004) Activation of coal tar pitch carbon fibres: physical activation versus chemical activation. Carbon 7:1367–1370

    Article  Google Scholar 

  21. Teng H, Yeh T-S, Hsu L-Y (1998) Preparation of activated carbon from bituminous coal with phosphoric acid activation. Carbon 9:1387–1395

    Article  Google Scholar 

  22. Wang J, Kaskel S (2012) KOH activation of carbon-based materials for energy storage. J Mater Chem 45:23710–23725

    Article  Google Scholar 

  23. Williams PT, Reed AR (2004) High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. J Anal Appl Pyrol 2:971–986

    Article  Google Scholar 

  24. Williams PT, Reed AR (2006) Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 2:144–152

    Article  Google Scholar 

  25. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 36:19088–19093

    Article  Google Scholar 

  26. Zhao L, Fan LZ, Zhou MQ, Guan H, Qiao S, Antonietti M, Titirici MM (2010) Nitrogen-containing hydrothermal carbons with superior performance in supercapacitors. Adv Mater 45:5202–5206

    Article  Google Scholar 

  27. Fan Z, Qi D, Xiao Y, Yan J, Wei T (2013) One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater Lett 101:29–32

    Article  CAS  Google Scholar 

  28. Li Z, Zhang L, Amirkhiz BS, Tan X, Xu Z, Wang H, Olsen BC, Holt C, Mitlin D (2012) Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors. Adv Energy Mater 4:431–437

    Article  Google Scholar 

  29. Endo M, Kim Y, Takeda T, Maeda T, Hayashi T, Koshiba K, Hara H, Dresselhaus M (2001) Poly (vinylidene chloride)-based carbon as an electrode material for high power capacitors with an aqueous electrolyte. J Electrochem Soc 10:A1135–A1140

    Article  Google Scholar 

  30. Ćirić-Marjanović G, Pašti I, Gavrilov N, Janošević A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced nitrogen-containing carbon materials. Chem Pap 8:781–813

    Google Scholar 

  31. Salavagione HJ, Gómez MA, Martínez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 17:6331–6334

    Article  Google Scholar 

  32. Sevilla M, Fuertes AB (2012) CO2 adsorption by activated templated carbons. J Colloid Interface Sci 1:147–154

    Article  Google Scholar 

  33. Su F, Poh CK, Chen JS, Xu G, Wang D, Li Q, Lin J, Lou XW (2011) Nitrogen-containing microporous carbon nanospheres with improved capacitive properties. Energy Environ Sci 3:717–724

    Article  Google Scholar 

  34. Xu B, Duan H, Chu M, Cao G, Yang Y (2013) Facile synthesis of nitrogen-doped porous carbon for supercapacitors. J Mater Chem A 14:4565

    Article  Google Scholar 

  35. Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochimica Acta 98:176–182

    Article  CAS  Google Scholar 

  36. Atkinson JD, Rood MJ (2012) Preparing microporous carbon from solid organic salt precursors using in situ templating and a fixed-bed reactor. Microporous Mesoporous Mater 160:174–181

    Article  CAS  Google Scholar 

  37. Sevilla M, Fuertes AB (2013) A general and facile synthesis strategy towards highly porous carbons: carbonization of organic salts. J Mater Chem A 44:13738–13741

    Article  Google Scholar 

  38. Pradhan BK, Sandle N (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 8:1323–1332

    Article  Google Scholar 

  39. Short M, Walker P (1963) Measurement of interlayer spacings and crystal sizes in turbostratic carbons. Carbon 1:3–9

    Article  CAS  Google Scholar 

  40. Wang Y, Su F, Wood CD, Lee JY, Zhao XS (2008) Preparation and characterization of carbon nanospheres as anode materials in lithium-ion secondary batteries. Ind Eng Chem Res 7:2294–2300

    Article  Google Scholar 

  41. Kajdos A, Kvit A, Jones F, Jagiello J, Yushin G (2010) Tailoring the pore alignment for rapid ion transport in microporous carbons. J Am Chem Soc 10:3252–3253

    Article  Google Scholar 

  42. Korenblit Y, Rose M, Kockrick E, Borchardt L, Kvit A, Kaskel S, Yushin G (2010) High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. ACS Nano 3:1337–1344

    Article  Google Scholar 

  43. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 8:1731–1742

    Article  Google Scholar 

  44. Jurewicz K, Vix-Guterl C, Frackowiak E, Saadallah S, Reda M, Parmentier J, Patarin J, Béguin F (2004) Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J Phys Chem Solids 2:287–293

    Article  Google Scholar 

  45. Lee J, Sohn K, Hyeon T (2001) Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores. J Am Chem Soc 21:5146–5147

    Article  Google Scholar 

  46. Frackowiak E (2006) Supercapacitors based on carbon materials and ionic liquids. J Braz Chem Soc 6:1074–1082

    Article  Google Scholar 

  47. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 18:5306–5313

    Article  Google Scholar 

  48. Jiang H-L, Liu B, Lan Y-Q, Kuratani K, Akita T, Shioyama H, Zong F, Xu Q (2011) From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. J Am Chem Soc 31:11854–11857

    Article  Google Scholar 

  49. Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 9:2318–2326

    Article  Google Scholar 

  50. Xu B, Yue S, Sui Z, Zhang X, Hou S, Cao G, Yang Y (2011) What is the choice for supercapacitors: graphene or graphene oxide. Energy Environ Sci 8:2826

    Article  Google Scholar 

  51. Lozano-Castello D, Calo J, Cazorla-Amoros D, Linares-Solano A (2007) Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen. Carbon 13:2529–2536

    Article  Google Scholar 

  52. Romanos J, Beckner M, Rash T, Firlej L, Kuchta B, Yu P, Suppes G, Wexler C, Pfeifer P (2012) Nanospace engineering of KOH activated carbon. Nanotechnology 1:015401

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 51462020 and 21364004) and the Excellent Young Teachers in Lanzhou University of Technology Training Project (1005ZCX016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heming Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Yang, Y., Sun, Y. et al. Highly nanoporous carbons by single-step organic salt carbonization for high-performance supercapacitors. J Appl Electrochem 45, 839–848 (2015). https://doi.org/10.1007/s10800-015-0850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0850-z

Keywords

Navigation