Skip to main content
Log in

Fabrication and Properties of Hydrophobically Modified ZnO–SiO2 Nanocomposite with Polysiloxane

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Studies on the wettability properties of solid surfaces are very important in any of the scientific and industrial fields. The most common principle for a superhydrophobic self-cleaning surface is the lotus effect induced by surface roughness. In this study, silicate compounds have been used to produce hydrophobic surfaces. In this way, firstly, SiO2–ZnO nanocomposite was produced, and then vinyl trimethoxy silane was used to increase the water contact angle (WCA). The structure and morphology of nanocomposites were investigated by infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy (SEM) and energy-dispersion spectrometer (EDS) analyses. The thermal stability of nanocomposite coatings was examined by thermogravimetric analysis (TGA). In order to investigate the wetting properties, the surface roughness was measured using an atomic force microscope (AFM), where the subsurface roughness average was obtained at 37.79 nm. The WCA of the coated surfaces with ZnO–SiO2 and ZnO–SiO2 @Polysiloxane nanocomposites were measured at 69 and 160°, respectively, indicating the surface superhydrophobic properties of ZnO–SiO2 @Polysiloxane nanocomposites. Finally, superhydrophobic properties of nanocomposites were investigated by the Cassie-Baxter model. The value of the f2 parameter in the model was estimated at 0.9556. This means that air occupies about 95.56% of the contact area between the water droplet and nano-coating, which is responsible for the superhydrophobic property of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W. Barthlott, C. Neinhuis, Planta 202, 1–8 (1997). https://doi.org/10.1007/s004250050096

    Article  CAS  Google Scholar 

  2. C. Neinhuis, W. Barthlott, Ann. Botany 79, 667–677 (1997). https://doi.org/10.1006/anbo.1997.0400

    Article  Google Scholar 

  3. B. Mahltig, Nanosols and textiles (World Scientific, 2008)

    Book  Google Scholar 

  4. X. Yao, Y. Song, L. Jiang, Adv. Mater. 23, 719–734 (2011). https://doi.org/10.1002/adma.201002689

    Article  CAS  PubMed  Google Scholar 

  5. H. Liu, S.-W. Gao, J.-S. Cai, C.-L. He, J.-J. Mao, T.-X. Zhu, Z. Chen, J.-Y. Huang, K. Meng, K.-Q. Zhang, S.S. Al-Deyab, Y.-K. Lai, Materials 9, 124 (2016). https://doi.org/10.3390/ma9030124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. Qu, L. Hou, J. He, X. Ma, M. Yuan, X. Liu, Prog. Chem. 28, 1774 (2016). https://doi.org/10.7536/PC160729

    Article  CAS  Google Scholar 

  7. H.H. Ipekci, H.H. Arkaz, M.S. Onses, M. Hancer, Surf. Coat. Technol. 299, 162–168 (2016). https://doi.org/10.1016/j.surfcoat.2016.05.026

    Article  CAS  Google Scholar 

  8. L.B. Boinovich, A.M. Emelyanenko, Mendeleev Commun. 23, 3–10 (2013). https://doi.org/10.1016/j.mencom.2013.01.002

    Article  CAS  Google Scholar 

  9. L. Ovaskainen, S. Chigome, N.A. Birkin, S.M. Howdle, N. Torto, L. Wågberg, C. Turner, J. Supercrit. Fluids 95, 610–617 (2014). https://doi.org/10.1016/j.supflu.2014.09.014

    Article  CAS  Google Scholar 

  10. C.-H. Xue, S.-T. Jia, J. Zhang, J.-Z. Ma, Sci. Technol. Adv. Mater. 11, 033002 (2010). https://doi.org/10.1088/1468-6996/11/3/033002

    Article  PubMed  PubMed Central  Google Scholar 

  11. B.N. Sahoo, B. Kandasubramanian, RSC Adv. 4, 22053–22093 (2014). https://doi.org/10.1039/C4RA00506F

    Article  CAS  Google Scholar 

  12. M. Paven, Fabrication and manipulation of non-wetting surfaces and drops: from super liquid-repellency and the Leidenfrost effect to liquid marbles (Johannes Gutenberg-Universität Mainz, 2016)

    Google Scholar 

  13. M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, L. Jiang, Macromol. Rapid Commun. 26, 1805–1809 (2005). https://doi.org/10.1002/marc.200500458

    Article  CAS  Google Scholar 

  14. J. Chojnowski, S. Slomkowski, W. Fortuniak, U. Mizerska, P. Pospiech, J. Inorg. Organomet. Polym. Mater. 30, 56–68 (2020). https://doi.org/10.1007/s10904-019-01281-2

    Article  CAS  Google Scholar 

  15. N. Zhao, Q. Xie, L. Weng, S. Wang, X. Zhang, J. Xu, Macromolecules 38, 8996–8999 (2005). https://doi.org/10.1021/ma051560r

    Article  CAS  Google Scholar 

  16. L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. 116, 4438–4441 (2004). https://doi.org/10.1002/ange.200460333

    Article  Google Scholar 

  17. R. Mohammadi, J. Wassink, A. Amirfazli, Langmuir 20, 9657–9662 (2004). https://doi.org/10.1021/la049268k

    Article  CAS  PubMed  Google Scholar 

  18. N. Zhao, J. Xu, Q. Xie, L. Weng, X. Guo, X. Zhang, L. Shi, Macromol. Rapid Commun. 26, 1075–1080 (2005). https://doi.org/10.1002/marc.200500188

    Article  CAS  Google Scholar 

  19. J. Zhang, X. Lu, W. Huang, Y. Han, Macromol. Rapid Commun. 26, 477–480 (2005). https://doi.org/10.1002/marc.200400512

    Article  CAS  Google Scholar 

  20. A. Lozhechnikova, H. Bellanger, B. Michen, I. Burgert, M. Österberg, Appl. Surf. Sci. 396, 1273–1281 (2017). https://doi.org/10.1016/j.apsusc.2016.11.132

    Article  CAS  Google Scholar 

  21. N. Forsman, A. Lozhechnikova, A. Khakalo, L.-S. Johansson, J. Vartiainen, M. Österberg, Carbohydr. Polym. 173, 392–402 (2017). https://doi.org/10.1016/j.carbpol.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  22. Y. Qing, C. Yang, C. Hu, Y. Zheng, C. Liu, Appl. Surf. Sci. 326, 48–54 (2015). https://doi.org/10.1016/j.apsusc.2014.11.100

    Article  CAS  Google Scholar 

  23. Y. Zhao, C. Yang, H. Zhang, G. Qiang, H. Fan, J. Inorg. Organomet. Polym. Mater. 29, 1192–1197 (2019). https://doi.org/10.1007/s10904-019-01082-7

    Article  CAS  Google Scholar 

  24. Y. Zheng, Y. He, Y. Qing, Z. Zhuo, Q. Mo, Appl. Surf. Sci. 258, 9859–9863 (2012). https://doi.org/10.1016/j.apsusc.2012.06.043

    Article  CAS  Google Scholar 

  25. J. Zhang, G. Pu, S.J. Severtson, ACS Appl. Mater. Interfaces 2, 2880–2883 (2010). https://doi.org/10.1021/am100555r

    Article  CAS  Google Scholar 

  26. C. Su, J. Li, H. Geng, Q. Wang, Q. Chen, Appl. Surf. Sci. 253, 2633–2636 (2006). https://doi.org/10.1016/j.apsusc.2006.05.038

    Article  CAS  Google Scholar 

  27. M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara, Langmuir 21, 7299–7302 (2005). https://doi.org/10.1021/la050901r

    Article  CAS  PubMed  Google Scholar 

  28. S.D. Bhagat, Y.-H. Kim, Y.-S. Ahn, Appl. Surf. Sci. 253, 2217–2221 (2006). https://doi.org/10.1016/j.apsusc.2006.04.030

    Article  CAS  Google Scholar 

  29. Y. Akamatsu, K. Makita, H. Inaba, T. Minami, Thin Solid Films 389, 138–145 (2001). https://doi.org/10.1016/S0040-6090(01)00901-4

    Article  CAS  Google Scholar 

  30. N. Auner, J. Weis, I.I.I., Organosilicon chemistry: from molecules to materials (John Wiley & Sons, New York, 2008)

    Google Scholar 

  31. M. Manca, A. Cannavale, L. De Marco, A.S. Aricò, R. Cingolani, G. Gigli, Langmuir 25, 6357–6362 (2009). https://doi.org/10.1021/la804166t

    Article  CAS  PubMed  Google Scholar 

  32. Z. Yu, H. Moussa, M. Liu, B. Chouchene, R. Schneider, W. Wang, M. Moliere, H. Liao, Appl. Surf. Sci. 455, 970–979 (2018). https://doi.org/10.1016/j.apsusc.2018.05.156

    Article  CAS  Google Scholar 

  33. P. Uthirakumar, B. Karunagaran, S. Nagarajan, E.-K. Suh, C.-H. Hong, J. Cryst. Growth 304, 150–157 (2007). https://doi.org/10.1016/j.jcrysgro.2007.01.035

    Article  CAS  Google Scholar 

  34. J.H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, J. Ding, Prog. Org. Coat. 64, 504–509 (2009). https://doi.org/10.1016/j.porgcoat.2008.08.013

    Article  CAS  Google Scholar 

  35. I. Das, M.K. Mishra, S.K. Medda, G. De, RSC Adv. 4, 54989–54997 (2014). https://doi.org/10.1039/C4RA10171E

    Article  CAS  Google Scholar 

  36. L. Dai, X.L. Chen, X. Zhang, T. Zhou, B. Hu, Appl. Phys. A 78, 557–559 (2004). https://doi.org/10.1007/s00339-003-2427-7

    Article  CAS  Google Scholar 

  37. I.A. Siddiquey, T. Furusawa, M. Sato, N.M. Bahadur, M. Mahbubul Alam, N. Suzuki, Ultrason. Sonochem. 19, 750–755 (2012). https://doi.org/10.1016/j.ultsonch.2011.12.011

    Article  CAS  PubMed  Google Scholar 

  38. L. Qomariyah, M. Aisah, N. Cahyando, W. Widiyastuti, S. Winardi, AIP Conf. Proc. 1840, 080009 (2017)

    Article  Google Scholar 

  39. K. Kusdianto, W. Widiyastuti, M. Shimada, L. Qomariyah, S. Winardi, IOP Conf. Ser.: Mater. Sci. Eng. 778, 012105 (2020)

    Article  CAS  Google Scholar 

  40. A. Li, K. Li, F. Zhang, S. Ren, F. Zhang, Q. He, J. Mater. Res. Technol. 14, 851–863 (2021). https://doi.org/10.1016/j.jmrt.2021.07.005

    Article  CAS  Google Scholar 

  41. Y. Gao, I. Gereige, A. El Labban, D. Cha, T.T. Isimjan, P.M. Beaujuge, ACS Appl. Mater. Interfaces 6, 2219–2223 (2014). https://doi.org/10.1021/am405513k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. H. Li, H. Lu, S. Liu, Q. Li, Q. Liu, Mater. Res. Bull. 114, 85–89 (2019). https://doi.org/10.1016/j.materresbull.2019.02.022

    Article  CAS  Google Scholar 

  43. B. Xu, Q. Zhang, ACS Omega 6, 9764–9770 (2021). https://doi.org/10.1021/acsomega.1c00381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. J. Tokarský, P. Martinec, K. Mamulová Kutláková, H. Ovčačíková, S. Študentová, J. Ščučka, Constr. Build. Mater. 199, 549–559 (2019). https://doi.org/10.1016/j.conbuildmat.2018.12.045

    Article  CAS  Google Scholar 

  45. Y. Rilda, R. Safitri, Y.E. Putri, R. Refinel, A. Agustien, W.L. Leaw, H. Nur, J. Chin. Chem. Soc. 66, 594–599 (2019). https://doi.org/10.1002/jccs.201800324

    Article  CAS  Google Scholar 

  46. A. Larena, M.C. Matías, J.M. Urreaga, Spectrosc. Lett. 25, 1121–1129 (1992). https://doi.org/10.1080/00387019208018220

    Article  CAS  Google Scholar 

  47. A.A.G. Santiago, J.G.S. Gondim, R.L. Tranquilin, F.S. Silva, F.F. Fernandez, M.C.B. Costa, F.V. Motta, M.R.D. Bomio, Chem. Phys. Lett. 740, 137051 (2020). https://doi.org/10.1016/j.cplett.2019.137051

    Article  CAS  Google Scholar 

  48. M.H.M. Zaid, K.A. Matori, S.H. Abdul Aziz, H.M. Kamari, Z.A. Wahab, Y.W. Fen, I.M. Alibe, J. Mater. Sci.: Mater. Electron. 27, 11158–11167 (2016). https://doi.org/10.1007/s10854-016-5234-6

    Article  CAS  Google Scholar 

  49. N.A. Galedari, M. Rahmani, M. Tasbihi, Environ. Sci. Pollut. Res. 24, 12655–12663 (2017). https://doi.org/10.1007/s11356-016-7888-2

    Article  CAS  Google Scholar 

  50. C. Li, Y. Sun, M. Cheng, S. Sun, S. Hu, Chem. Eng. J. 333, 361–369 (2018). https://doi.org/10.1016/j.cej.2017.09.165

    Article  CAS  Google Scholar 

  51. M. Wójcik-Bania, S.A. Part, A: Mol. Biomol. Spectrosc. 252, 119491 (2021). https://doi.org/10.1016/j.saa.2021.119491

    Article  CAS  Google Scholar 

  52. R. Nandanwar, P. Singh, F.Z. Haque, Am. Chem. Sci. J. 5, 1–10 (2015). https://doi.org/10.9734/ACSj/2014/10875

    Article  CAS  Google Scholar 

  53. L. Qomariyah, W. Widiyastuti, K. Kusdianto, T. Nurtono, D. Anggoro, S. Winardi, Chem. Pap. 74, 4115–4123 (2020). https://doi.org/10.1007/s11696-020-01221-2

    Article  CAS  Google Scholar 

  54. M.N. Ali, S.C. Goud, A.S. Roy, J. Mater. Sci.: Mater. Electron. 31, 12570–12578 (2020). https://doi.org/10.1007/s10854-020-03807-8

    Article  CAS  Google Scholar 

  55. Z. Fu, C.-X. Liao, B.-X. Guo, G.-H. Lin, Chin. Phys. Lett. 15, 457 (1998). https://doi.org/10.1088/0256-307X/15/6/025

    Article  CAS  Google Scholar 

  56. J.D. Jovanovic, M.N. Govedarica, P.R. Dvornic, I.G. Popovic, Polym. Degrad. Stab. 61, 87–93 (1998). https://doi.org/10.1016/S0141-3910(97)00135-3

    Article  CAS  Google Scholar 

  57. A. Elbourne, M.F. Dupont, S. Collett, V.K. Truong, X. Xu, N. Vrancken, V. Baulin, E.P. Ivanova, R.J. Crawford, J. Colloid Interface Sci. 536, 363–371 (2019). https://doi.org/10.1016/j.jcis.2018.10.059

    Article  CAS  PubMed  Google Scholar 

  58. N.P. Boks, H.J. Busscher, H.C. van der Mei, W. Norde, Langmuir 24, 12990–12994 (2008). https://doi.org/10.1021/la801824c

    Article  CAS  PubMed  Google Scholar 

  59. A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546–551 (1944). https://doi.org/10.1039/TF9444000546

    Article  CAS  Google Scholar 

  60. K.N. Fadhila, D.K. Maharani, Unesa J. Chem. (2022). https://doi.org/10.26740/ujc.v11n1.p69-76

    Article  Google Scholar 

  61. L.-H. Xu, L.-M. Wang, H. Pan, Y. Shen, Y. Ding, X.-Y. Zhang, Y. Sheng, J. Nanosci. Nanotechnol. 19, 7799–7809 (2019). https://doi.org/10.1166/jnn.2019.16730

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the engineering department at Guilan University.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

The main manuscript text wrote by AM. SN and SM were MS students and the experiments were performed by them. The experiments and characterizations were conducted under the supervision of AM (corresponding author).

Corresponding author

Correspondence to Arash Montazeri.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

lonbani, S.N., Montazeri, A. & Malakdar, S. Fabrication and Properties of Hydrophobically Modified ZnO–SiO2 Nanocomposite with Polysiloxane. J Inorg Organomet Polym 33, 1191–1200 (2023). https://doi.org/10.1007/s10904-023-02571-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02571-6

Keywords

Navigation