Skip to main content
Log in

A facile and large-area fabrication method of superhydrophobic self-cleaning polysiloxane/TiO2 nanocomposite films and its dielectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The polysiloxane–TiO2 nanocomposites were prepared by a solvent casting method in triethanolamine and tetrahydrofuran solvents. The prepared nanocomposites were characterized by X-ray diffraction technique, Fourier transform infrared spectroscopy, and scanning electron microscopy for structural analysis and surface morphology. The amorphous nature of polysiloxane observed in XRD spectra and FTIR spectra shows the characteristic peaks of Si–CH2, Si–CH3, and Ti–O–Ti, confirming the formation of nanocomposites. The surface morphology shows the nanoparticles are completely embedded in the polysiloxane. Furthermore, the DC conductivity shows the increase in conductivity with the increase in temperature due to tunneling phenomena. The wet contact angle of pure polysiloxane was 78.3° before being exposed to UV light and upon the addition of TiO2 in PS the WAC increased to 88.2° which clearly indicates that the nanocomposites are superhydrophobic in nature. Among all the nanocomposites of different weight percentages, 0.3 wt% shows the highest DC conductivity of 6 × 10−5 S/cm. The dielectric spectroscopy study reveals low dielectric constant and tangent loss for 0.3 wt% nanocomposite; as a result it shows the highest conductivity of 1.35 × 10−4 S/cm. The quality factor confirms that there is a small damping loss for 0.3 wt% of nanocomposites which is favourable for high conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Tabakci, M. Ersoz, M. Yilmaz, A calix[4]arene-containing polysiloxane resin for removal of heavy metals and dichromate anion. J. Macromol. Sci. A 43, 57 (2006)

    Article  CAS  Google Scholar 

  2. P. Hammer, M.G. Schiavetto, F.C. Dos Santos, A.V. Benedetti, S.H. Pulcinelli, C.V. Santilli, Improvement of the corrosion resistance of polysiloxane hybrid coatings by cerium doping. J. Non-Cryst. Solids 356, 2606 (2010)

    Article  CAS  Google Scholar 

  3. M. Barletta, S.V.G. Rubino, M. Puopolo, S. Venettacci, Functionalized polysiloxane coatings on hot-rolled and high‐strength Fe 430 B steel: analysis of mechanical response and resistance to chemicals. Appl. Polym. Sci. 131, 40624 (2014)

    Google Scholar 

  4. S. Dewasthale, C. Andrews, D. Graiver, R. Narayan, Water soluble polysiloxanes. Silicon 9, 619 (2017)

    Article  CAS  Google Scholar 

  5. S. Jodeh, B. Khalaf, S. Radi, S. Tighadouini, R. Salghi, S. Samhan, I. Warad, D. Jodeh, New polysiloxane surfaces modified with ortho-, meta-, or para-nitrophenyl moieties for cadmium removal from water. J. Surf. Eng. Mater. Adv. Technol. 6, 18 (2016)

    CAS  Google Scholar 

  6. S.J. Dünki, E.C. Reyes, D.M. Opris, A facile synthetic strategy to polysiloxanes containing sulfonyl side groups with high dielectric permittivity. Polym. Chem. 8, 715 (2017)

    Article  Google Scholar 

  7. C. Racles, V. Cozan, A. Bele, M. Dascalu, Polar silicones: structure-dielectric properties relationship. Des. Monomers Polym. 19, 496 (2016)

    Article  CAS  Google Scholar 

  8. S. Giaveri, P. Gronchi, A. Barzoni, Polysiloxane-epoxy resin for high-temperature coatings: structure effects on layer performance after 450 °C treatment. Coatings. 7, 213 (2017)

    Article  Google Scholar 

  9. N. Riehle, S. Thude, T. Götz, A. Kandelbauer, S. Thanos, G.E.M. Tovar, G. Lorenz, Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application. Eur. Polym. J. 101, 190 (2018)

    Article  CAS  Google Scholar 

  10. K. Lu, D. Erb, M. Liu, Phase transformation, oxidation stability, and electrical conductivity of TiO2-polysiloxane derived ceramics. J. Mater. Sci. 51, 10166 (2016)

    Article  CAS  Google Scholar 

  11. M.A. Basit, M.M. Butt, M. Nazir, Muhammad Naeem Ashiq, Conjunction of macroporosity and NH4F treatment for improved performance of TiO2 photoanode in quantum-dot sensitized solar cells. J. Mater. Sci. 30, 1861 (2019)

    CAS  Google Scholar 

  12. M.A. Basit, M.A. Abbas, E.S. Jung, J.H. Bang, T.J. Park, Improved light absorbance and quantum-dot loading by macroporous TiO2 photoanode for PbS quantum-dot-sensitized solar cells. Mater. Chem. Phys. 196, 170 (2017)

    Article  Google Scholar 

  13. B. Sun, W. Zhao, Y. Liu, P. Chen, White-light-controlled resistive switching and photovoltaic effects in TiO2/ZnO composite nanorods array at room temperature. J. Mater. Sci. 25, 4306 (2014)

    CAS  Google Scholar 

  14. P. Huang, H.Q. Shi, H.M. Xiao, Y.Q. Li, N. Hu, S.Y. Fu, High performance surface-modified TiO2/silicone nanocomposite. Sci. Rep. 7, 5951 (2017)

    Article  Google Scholar 

  15. A.S. Roy, S. Gupta, S. Seethamraju, G. Madras, P.C. Ramamurthy, Impedance spectroscopy of novel hybrid composite films of polyvinylbutyral (PVB)/ functionalized mesoporous silica. Composites B 58, 134 (2014)

    Article  CAS  Google Scholar 

  16. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites B 47, 314 (2013)

    Article  CAS  Google Scholar 

  17. W. Li, R. Liang, A. Hu, Z. Huang, Y.N. Zhou, Generation of oxygen vacancies in visible light-activated one-dimensional iodine TiO2 photocatalysts. RSC Adv. 4, 36959 (2014)

    Article  CAS  Google Scholar 

  18. I. Ahmad, C.W. Kan, A review on development and applications of bio-inspired superhydrophobic textiles. Materials 9, 892 (2016)

    Article  Google Scholar 

  19. C.-H. Xue, W. Yin, P. Zhang, J. Zhang, P.-T. Ji, S.-T. Jia, UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surf. Physicochem. Eng. Asp. 427, 7 (2013)

    Article  CAS  Google Scholar 

  20. J. Wu, J. Xia, W. Lei, B.-P. Wang, Fabrication of superhydrophobic surfaces with double-scale roughness. Mater. Lett. 64, 1251 (2010)

    Article  CAS  Google Scholar 

  21. X. X.Zhou, W.Y. GuoDing, Chen, Superhydrophobic or superhydrophilic surfaces regulated by micro-nano structured ZnO powders. Appl. Surf. Sci. 255, 3371 (2008)

    Article  Google Scholar 

  22. D. C.Guo, Y.M.Y. ZhaoSunWang, Liu, Droplet impact on anisotropic superhydrophobic surfaces. Langmuir 34, 3533 (2018)

    Article  Google Scholar 

  23. D.J. Lin, L. Wang, X.D. Wang, W.M. Yan, Reduction in the contact time of impacting droplets by decorating a rectangular ridge on superhydrophobic surfaces. Int. J. Heat Mass Transf. 132, 1105 (2019)

    Article  Google Scholar 

  24. Y. Shen, L. Wang, H. Zhang, T. Wu, H.Y. Pan, Preparation and characterization of titania/silicone nanocomposite material. Mat. Sci. Eng. 87, 012021 (2015)

    Google Scholar 

  25. A.S. Roy, Antistatic and dielectric properties of one-dimensional Al2+:Nd2O3 nanowire doped polyaniline nanocomposites for electronic application. Sens. Actuators A 280, 1 (2018)

    Article  CAS  Google Scholar 

  26. J.W. Lee, H.B. Cho, T. Nakayama, T. Suzuki, H. Suematsu, K. Niihara, Internal structure control of the TiO2 nanotubes and polysiloxane nanocomposites by nanosecond pulsed electric field. J. Asian Ceram. Soc. 2, 97 (2014)

    Article  Google Scholar 

  27. Y.C. Chiu, C.C. Huang, H.C. Tsai, Synthesis, characterization, and thermomechanical properties of siloxane-modified epoxy‐based nanocomposite. J. Appl. Polym. Sci. 131, 40984 (2014)

    Article  Google Scholar 

  28. T. Ma, R. Yang, Z. Zheng, Y. Song, Rheology of fumed silica/polydimethylsiloxane suspensions. J. Rheol. 61, 205 (2017)

    Article  CAS  Google Scholar 

  29. P. Cassagnau, Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49, 2183 (2008)

    Article  CAS  Google Scholar 

  30. K.U. Kirst, F. Kremer, V.M. Litvinov, Broad-band dielectric spectroscopy on the molecular dynamics of bulk and adsorbed poly(dimethylsiloxane). Macromolecules 26, 975 (1993)

    Article  CAS  Google Scholar 

  31. A.S. Roy, S. Gupta, S. Seethamraju, P.C. Ramamurthy, G. Madras, Fabrication of poly(vinylidene chloride-co-vinyl chloride)/TiO2 nanocomposite films and their dielectric properties. Sci. Adv. Mater. 6, 946 (2014)

    Article  CAS  Google Scholar 

  32. J.N. Ansari, S. Khasim, A. Parveen, O.A.A. Hartomy, Z. Khattari, N. Badi, A.S. Roy, Synthesis, characterization, dielectric and rectification properties of PANI/Nd2O3:Al2O3 nanocomposites. Polym. Adv. Technol. 27, 1064 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashis S. Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, M.N., Goud, S.C. & Roy, A.S. A facile and large-area fabrication method of superhydrophobic self-cleaning polysiloxane/TiO2 nanocomposite films and its dielectric properties. J Mater Sci: Mater Electron 31, 12570–12578 (2020). https://doi.org/10.1007/s10854-020-03807-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03807-8

Navigation