Skip to main content
Log in

Superhydrophobic and low-hysteresis coating based on rubber-modified TiO2/SiO2 nanoparticles

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this article, the wettability of a superhydrophobic layer from rubber-modified TiO2/SiO2 nanocomposite is studied. The nanocomposites were prepared with various ratios of TiO2 and SiO2 nanoparticles (NPs) and then studied the effect of annealing, UV irradiation and aging after coating on a substrate. Results show that the average contact angle of deionized water droplets on the most hydrophobic coating is 129.5°, which increases up to 151.0° by UV irradiation. In addition, the lowest surface energy of the prepared layers was measured as 29.61 mJ m–2. The hydrophobicity of the coating surface was investigated after annealing (at temperatures up to 300°C), and results show that the maximum contact angle is about 150°. The dynamics of water droplets on the most hydrophobic coating were investigated by rapid imaging, and results show no hysteresis for surface wetting. Fourier transform infrared spectroscopy shows that UV irradiation causes the formation of C–H functional groups on the surface without considerable change in the hydrophobicity, while the annealing process has no significant effects on the functional groups. The morphology of the coatings was investigated by scanning electron microscopy, and results reveal that the roughness of surfaces increases due to annealing and UV radiation. In addition, a minimum increase in the roughness coefficient is estimated as 73% of the initial value after annealing, which is in agreement with atomic force microscopy results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Banik M, Chakrabarty P, Das A, Ray S K and Mukherjee R 2019 Adv. Mater. Interfaces 6 1900063

    Article  Google Scholar 

  2. Tian X, Verho T and Ras R H A 2016 Science 352 142

    Article  CAS  Google Scholar 

  3. Qing Y, Yang C, Yu N, Shang Y, Sun Y, Wang L et al 2016 Chem. Eng. J. 290 37

    Article  CAS  Google Scholar 

  4. Mokarian Z, Rasuli R and Abedini Y 2016 Appl. Surf. Sci. 369 567

    Article  CAS  Google Scholar 

  5. Simpson J T, Hunter S R and Aytug T 2015 Rep. Prog. Phys. 78 086501

    Article  Google Scholar 

  6. Shang W, Deng S, Feng S, Xing Y, Hou Y and Zheng Y 2017 RSC Adv. 7 7885

    Article  CAS  Google Scholar 

  7. Ganne A, Lebed V O and Gavrilov A I 2016 Colloids Surf. A Physicochem. Eng. Asp. 499 150

    Article  CAS  Google Scholar 

  8. Roy S, Bhandaru N, Das R, Harikrishnan G and Mukherjee R 2014 ACS Appl. Mater. Inter. 6 6579

    Article  CAS  Google Scholar 

  9. Rasuli R, Mokarian Z, Karimi R, Shabanzadeh H and Abedini Y 2015 Thin Solid Films 589 364

    Article  CAS  Google Scholar 

  10. Ghashghaee M, Fallah M and Rabiee A 2019 Prog. Org. Coat. 136 105270

    Article  CAS  Google Scholar 

  11. Wang P, Hayashi T, Meng Q, Wang Q, Liu H, Hashimoto K et al 2017 Small 13 1601250

    Article  Google Scholar 

  12. Zhu J, Xie J, Lü X and Jiang D 2009 Colloid Surf. A 342 97

    Article  CAS  Google Scholar 

  13. Parale V G, Kim T, Lee K-Y, Phadtare V D, Dhavale R P, Jung H-N-R et al 2020 Ceram. Int. 46 4939

    Article  CAS  Google Scholar 

  14. Kim Y N, Shao G N, Jeon S J, Imran S M, Sarawade P B and Kim H T 2013 Chem. Eng. J. 231 502

    Article  CAS  Google Scholar 

  15. Wan F, Wang C, Han Y, Kong L, Yan J, Zhang X and Liu Y J D T 2018 Dalton Trans. 47 13608

    Article  CAS  Google Scholar 

  16. Latthe S S, Sutar R S, Kodag V S, Bhosale A K, Kumar A M, Kumar Sadasivuni K et al 2019 Prog. Org. Coat. 128 52

    Article  CAS  Google Scholar 

  17. Klaysri R, Wichaidit S, Tubchareon T, Nokjan S, Piticharoenphun S, Mekasuwandumrong O et al 2015 Ceram. Int. 41 11409

    Article  CAS  Google Scholar 

  18. Kumar S R, Suresh C, Vasudevan A K, Suja N, Mukundan P and Warrier K 1999 Mat. Lett. 38 161

    Article  Google Scholar 

  19. Anitha C, Azim S S and Mayavan S 2017 J. Alloys Compd. 711 197

    Article  CAS  Google Scholar 

  20. Tang M-K, Huang X-J, Yu J-G, Li X-W and Zhang Q-X 2017 J. Mater. Process. Tech. 239 178

    Article  CAS  Google Scholar 

  21. Ju J, Yao X, Hou X, Liu Q, Zhang Y S and Khademhosseini A 2017 J. Mat. Chem. A 5 16273

    Article  CAS  Google Scholar 

  22. Varughese S M and Bhandaru N 2020 Soft Matter 16 1692

    Article  CAS  Google Scholar 

  23. Ramos-Alvarado B, Kumar S and Peterson G P 2016 J. Chem. Phys. 144 014701

    Article  Google Scholar 

  24. Xu J, Li M, Zhao Y and Lu Q 2007 Colloids Surf. A 302 136

    Article  CAS  Google Scholar 

  25. Wenzel R N 1949 J. Phys. Chem. 53 1466

    Article  CAS  Google Scholar 

  26. Wenzel R N 1936 Ind. Eng. Chem. 28 988

    Article  CAS  Google Scholar 

  27. Cassie A and Baxter S 1944 Trans. Faraday Soc. 40 546

    Article  CAS  Google Scholar 

  28. Cassie A 1948 Discuss Faraday Soc. 3 11

    Article  Google Scholar 

  29. Lei Y, Sun R, Zhang X, Feng X and Jiang L 2016 Adv. Mater. 28 1477

    Article  CAS  Google Scholar 

  30. Taran L and Rasuli R 2017 Adv. Powd. Technol. 28 2996

    Article  CAS  Google Scholar 

  31. Rasuli R, Irajizad A and Ahadian M M 2009 Vacuum 84 469

    Article  CAS  Google Scholar 

  32. Momen G and Farzaneh M 2012 Appl. Surf. Sci. 258 5723

    Article  CAS  Google Scholar 

  33. Kim S-H, Cherney E A, Hackam R and Rutherford K G 1994 IEEE Trans. Dielectr. Electr. Insul. 1 106

    Article  CAS  Google Scholar 

  34. Das G, Mariotto G and Quaranta A 2006 J. Electrochem. Soc. 153 F46

    Article  CAS  Google Scholar 

  35. Mirabedini A, Mirabedini S, Babalou A and Pazokifard S 2011 Prog. Org. Coat. 72 453

    Article  CAS  Google Scholar 

  36. Zhang H, Yang H and Shentu B 2019 J. Appl. Polym. Sci. 136 47170

    Article  Google Scholar 

Download references

Acknowledgement

We thank the University of Zanjan for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rasuli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allahyari, P., Rasuli, R., Servati, M. et al. Superhydrophobic and low-hysteresis coating based on rubber-modified TiO2/SiO2 nanoparticles. Bull Mater Sci 44, 85 (2021). https://doi.org/10.1007/s12034-021-02384-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02384-8

Keywords

Navigation