Skip to main content
Log in

Optical, Microhardness, and Radiation Shielding Properties of Rare Earth Doped Strontium Barium Titanate Polyvinylidene Fluoride Nanocomposites

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The amazing role of R-BST nanoparticles addition on some optical, mechanical and radiation shielding properties of PVDF has been studied. For this purpose, R-BST nanoparticles were synthesized by solid-state reaction at 1300 °C. R-BST/PVDF nanocomposites were synthesized by solution casting method where R-BST varies by (0, 5, 10, 15, and 25 vol.%). The structure of the nanoparticles and nanocomposites were investigated by X-ray diffraction (XRD), which reveals the existence of the cubic phase structure of R-BST nanoparticles embedded in the PVDF matrix. The morphology of the R-BST nanoparticles was described by transmission electron microscope (TEM), where the grain size of the nanoparticles was around 60–70 nm. The microhardness of the R-BST/PVDF nanocomposite was studied, and the results revealed that it increased by 87.2% as R-BST nanoparticles increased from 0 to 25 vol.% in PVDF matrix. The optical properties of R-BST/PVDF were examined by UV–Vis technique. The transmittance was found to decrease while the absorbance increased with increasing the volume percent of the nanoparticles (R-BST). The optical band gap, extinction coefficient and refractive index of the nanocomposite were studied. The results showed an increase in extinction coefficient and refractive index and a decrease in optical band gap from 2.59 to 2.00 eV as R-BST nanoparticles increased. The gamma shielding properties have been also studied to obtain the gamma radiation shielding effectiveness of these nanocomposite samples with changing R-BST nanoparticle content from 0 to 25 vol%. The linear attenuation coefficient, half value layer, and mass attenuation coefficient have been measured. According to all obtained results, nanocomposites/R-BST nanoparticle samples with various percentages (0, 5, 10, 15, and 25 vol%) can be used as a radiation shielding material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. D.E. Abulyazied, H.M. Abomostafa, Magnetic structured nickel core-shell@ silica/PMMA nanocomposites from synthesis to applications. J. Inorg. Organomet. Polym. Mater. 30(7), 1–12 (2020)

    Article  Google Scholar 

  2. M.T. Alabsy, J.S. Alzahrani, M.I. Sayyed et al., Gamma-ray attenuation and exposure buildup factor of novel polymers in shielding using geant4 simulation. Materials (Basel) 14(17), 5051 (2021). https://doi.org/10.3390/ma14175051

    Article  CAS  PubMed  Google Scholar 

  3. E.M. Abdelrazek, R. Holze, Structural, optical and some physical properties of PVDF films filled with LiBr/MnCl2 mixed fillers. Phys B Condens Matter. 406(4), 766–770 (2011). https://doi.org/10.1016/j.physb.2010.11.077

    Article  CAS  Google Scholar 

  4. L. Cheng, D. Lin, C. Shih, A. Dwan, C.C. Gryte, PVDF membrane formation by diffusion-induced phase separation-morphology prediction based on phase behavior and mass transfer modeling. J. Polym. Sci. Part B Polym. Phys. 37(16), 2079–2092 (1999)

    Article  CAS  Google Scholar 

  5. A. Tawansi, A.H. Oraby, E. Ahmed, E.M. Abdelrazek, M. Abdelaziz, Effect of NA-light radiation on the optical gap and crystal structure of AgNO3-diffused PVDF sensor. J. Appl. Polym. Sci. 70(9), 1759–1767 (1998)

    Article  CAS  Google Scholar 

  6. A. Tawansi, M.I. Ayad, E.M. Abdel-Razek, Effect of valence electron spin polarization on the physical properties of CuCl2-filled poly (vinylidene fluoride) as a microwave modulator. J. Appl. Polym. Sci. 72(6), 771–781 (1999)

    Article  CAS  Google Scholar 

  7. K.M. Kim, N.-G. Park, K.S. Ryu, S.H. Chang, Characterization of poly (vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with TiO2 nanoparticles. Polymer (Guildf) 43(14), 3951–3957 (2002)

    Article  CAS  Google Scholar 

  8. K. Raagulan, R. Braveenth, H. Jang et al., Electromagnetic shielding by MXene-graphene-PVDF composite with hydrophobic, lightweight and flexible graphene coated fabric. Materials (Basel) 11(10), 1803 (2018). https://doi.org/10.3390/ma11101803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Zgonik, P. Bernasconi, M. Duelli et al., Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO 3 crystals. Phys Rev B 50(9), 5941 (1994)

    Article  CAS  Google Scholar 

  10. J. Zhang, J. Zhai, X. Chou, X. Yao, Influence of rare-earth addition on microstructure and dielectric behavior of Ba0. 6Sr0 4. TiO3 ceramics. Mater Chem Phys. 111(2–3), 409–413 (2008)

    Article  CAS  Google Scholar 

  11. K. Mimura, K. Hiramatsu, M. Moriya et al., Optical properties of transparent barium titanate nanoparticle/polymer hybrid synthesized from metal alkoxides. J. Nanoparticle Res. 12(5), 1933–1943 (2010). https://doi.org/10.1007/s11051-009-9758-z

    Article  CAS  Google Scholar 

  12. T. Badapanda, S. Sarangi, B. Behera et al., Structural refinement, optical and electrical properties of [Ba1−x Sm2x/3](Zr0.05Ti0.95)O3 ceramics. J. Mater. Sci. Mater. Electron. 25(8), 3427–3439 (2014). https://doi.org/10.1007/s10854-014-2035-7

    Article  CAS  Google Scholar 

  13. H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin et al., An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater. Res. Bull. (2022). https://doi.org/10.1016/j.materresbull.2022.111828

    Article  Google Scholar 

  14. M.Y.A. Mostafa, H.M.H. Zakaly, S.A.M. Issa, H.A. Saudia, A.M.A. Henaish, Tailoring variations in the linear optical and radiation shielding parameters of PVA polymeric composite films doped with rare-earth elements. Appl. Phys. A. 128(3), 199 (2022). https://doi.org/10.1007/s00339-022-05304-7

    Article  CAS  Google Scholar 

  15. X. Xiong, Q. Zhang, Z. Zhang, H. Yang, J. Tong, J. Wen, Superior energy storage performance of PVDF-based composites induced by a novel nanotube structural BST@ SiO2 filler. Compos. Part A Appl. Sci. Manuf. 145, 106375 (2021)

    Article  CAS  Google Scholar 

  16. L. Zhang, X. Shan, P. Wu, Z.-Y. Cheng, Dielectric characteristics of CaCu3Ti4O12/P (VDF-TrFE) nanocomposites. Appl. Phys. A 107(3), 597–602 (2012)

    Article  CAS  Google Scholar 

  17. R.K. Goyal, S.S. Katkade, D.M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Compos. Part B Eng. 44(1), 128–132 (2013)

    Article  CAS  Google Scholar 

  18. J. Wang, J. Hu, L. Yang et al., High discharged energy density of polymer nanocomposites induced by Nd-doped BaTiO3 nanoparticles. J. Mater. 4(1), 44–50 (2018). https://doi.org/10.1016/j.jmat.2018.01.001

    Article  Google Scholar 

  19. Q. Zhang, F. Gao, C. Zhang et al., Enhanced dielectric tunability of Ba0.6Sr0.4TiO3/Poly(vinylidene fluoride) composites via interface modification by silane coupling agent. Compos. Sci. Technol. 129, 93–100 (2016). https://doi.org/10.1016/j.compscitech.2016.04.016

    Article  CAS  Google Scholar 

  20. M.E. Azim Araghi, N. Shaban, M. Bahar, Synthesis and characterization of nanocrystalline barium strontium titanate powder by a modified sol-gel processing. Mater. Sci. 34(1), 63–68 (2016). https://doi.org/10.1515/msp-2016-0020

    Article  CAS  Google Scholar 

  21. M. Barlet, J.-M. Delaye, T. Charpentier et al., Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. J. Non Cryst. Solids. 417–418, 66–79 (2015). https://doi.org/10.1016/j.jnoncrysol.2015.02.005

    Article  CAS  Google Scholar 

  22. N.W. Elshereksi, A. Muchtar, C.H. Azhari, Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites. Polym. Polym. Compos. 29(5), 484–496 (2021)

    CAS  Google Scholar 

  23. R. Bajpai, V. Mishra, S.C. Datt, Microhardness measurements of poly (methyl methacrylate) and poly (vinylidene fluoride) polyblends. Polym. Test. 11(5), 387–391 (1992)

    Article  CAS  Google Scholar 

  24. M.H. Zakaly H, Abulyazied DE, Saudi HA, Alotaibi BM, Issa SAM., Surface hardness, thermal, optical, and photon attenuation coefficients assessment for dysprosium-doped tellurite glasses. J. Rare Earths (2022). https://doi.org/10.1016/j.jre.2022.05.009

    Article  Google Scholar 

  25. M. Panda, N. Sultana, A.K. Singh, Structural and optical properties of PVDF/GO nanocomposites. Fullerenes Nanotub. Carbon Nanostruct. 30(5), 559–570 (2022). https://doi.org/10.1080/1536383X.2021.1966767

    Article  CAS  Google Scholar 

  26. M.A. Reyes-Acosta, A.M. Torres-Huerta, M.A. Domínguez-Crespo, A.I. Flores-Vela, H.J. Dorantes-Rosales, J.A. Andraca-Adame, Thermal, mechanical and UV-shielding properties of poly (methyl methacrylate)/cerium dioxide hybrid systems obtained by melt compounding. Polymers (Basel). 7(9), 1638–1659 (2015)

    Article  CAS  Google Scholar 

  27. H.E. Ali, I.S. Yahia, H. Algarni, Y. Khairy, Enhancing the optical absorption, conductivity, and nonlinear parameters of PVOH films by Bi-doping. New J. Phys. 23(4), 43001 (2021)

    Article  CAS  Google Scholar 

  28. H.M. Abomostafa, D.E. Abulyazied, Linear and nonlinear optical response of nickel core-Shell @ Silica/PMMA nanocomposite film for flexible optoelectronic applications. J. Inorg. Organomet. Polym. Mater. 31(7), 2902–2914 (2021). https://doi.org/10.1007/s10904-021-01883-9

    Article  CAS  Google Scholar 

  29. A.M. Abd-Elnaiem, H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, M. Rashad, The effect of composition and γ-irradiation on the Vickers hardness, structural and optical properties of xLiNbO3-25CaO-35PbO-(40–x) waste systems. Ceram. Int. 47(13), 18751–18760 (2021). https://doi.org/10.1016/j.ceramint.2021.03.210

    Article  CAS  Google Scholar 

  30. T.S. Soliman, M.F. Zaki, M.M. Hessien, S.I. Elkalashy, The structure and optical properties of PVA-BaTiO3 nanocomposite films. Opt. Mater. (Amst). (2020). https://doi.org/10.1016/j.optmat.2020.110648

    Article  Google Scholar 

  31. H.E. Ali, Y. Khairy, H. Algarni et al., The visible laser absorption property of chromium-doped polyvinyl alcohol films: synthesis, optical and dielectric properties. Opt. Quantum. Electron. 51(2), 47 (2019)

    Article  Google Scholar 

  32. S. El-Sayed, S.A.M. El, Influence of the Sol–Gel-Derived Nano-Sized TiO2 and Y2O3 in improving the optical and electric properties of P(VAc/MMA). Brazil. J. Phys. 51(6), 1584–1596 (2021). https://doi.org/10.1007/s13538-021-00979-4

    Article  CAS  Google Scholar 

  33. A.S. Abouhaswa, H.M.H. Zakaly, S.A.M. Issa et al., Synthesis, physical, optical, mechanical, and radiation attenuation properties of TiO2–Na2O–Bi2O3–B2O3 glasses. Ceram. Int. 47(1), 185–204 (2021). https://doi.org/10.1016/j.ceramint.2020.08.122

    Article  CAS  Google Scholar 

  34. P.K. Khare, J.M. Keller, S.C. Datt, Open-and short-circuit thermally stimulated currents in ethyl cellulose (EC): polymethyl methacrylate (PMMA) blend. Bull Mater. Sci. 22(2), 109–113 (1999)

    Article  CAS  Google Scholar 

  35. F.M. Ali, Structural and optical characterization of [(PVA:PVP)-Cu2+] composite films for promising semiconducting polymer devices. J. Mol. Struct. 1189, 352–359 (2019). https://doi.org/10.1016/j.molstruc.2019.04.014

    Article  CAS  Google Scholar 

  36. N. An, B. Zhuang, M. Li, Y. Lu, Z.-G. Wang, Combined theoretical and experimental study of refractive indices of water–acetonitrile–salt systems. J. Phys. Chem. B. 119(33), 10701–10709 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. A.I. Elazaka, H.M.H. Zakaly, S.A.M. Issa et al., New approach to removal of hazardous Bypass Cement dust (BCD) from the environment: 20Na2O-20BaCl2-(60–x)B2O3-(x)BCD glass system and Optical, mechanical, structural and nuclear radiation shielding competences. J. Hazard. Mater. 403, 123738 (2021). https://doi.org/10.1016/j.jhazmat.2020.123738

    Article  CAS  PubMed  Google Scholar 

  38. S.A.M. Issa, A.A.A. Darwish, M.M. El-Nahass, The evolution of gamma-rays sensing properties of pure and doped phthalocyanine. Prog. Nucl. Energy 100, 276–282 (2017). https://doi.org/10.1016/J.PNUCENE.2017.06.016

    Article  CAS  Google Scholar 

  39. A. Alatawi, A.M. Alsharari, S.A.M. Issa et al., Improvement of mechanical properties and radiation shielding performance of AlBiBO3 glasses using yttria: an experimental investigation. Ceram. Int. 46(3), 3534–3542 (2020). https://doi.org/10.1016/j.ceramint.2019.10.069

    Article  CAS  Google Scholar 

  40. S.A. Issa, H.M.H. Zakaly, M. Pyshkina, M.Y.A. Mostafa, M. Rashad, T.S. Soliman, Structure, optical, and radiation shielding properties of PVA–BaTiO3 nanocomposite films: an experimental investigation. Radiat. Phys. Chem. 180, 109281 (2021). https://doi.org/10.1016/j.radphyschem.2020.109281

    Article  CAS  Google Scholar 

  41. S.A.M. Issa, A.M. Ali, H.O. Tekin et al., Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3. Nucl. Eng. Technol. 52(6), 1297–1303 (2020). https://doi.org/10.1016/j.net.2019.11.017

    Article  CAS  Google Scholar 

  42. R. Makhloufi, A. Boutarfaia, M. Poulain, New oxysulphide glasses in Sb2S3–MmOn and Sb2S3–Sb2O3–MmOn systems. J. Alloys Compd. 398(1–2), 249–255 (2005). https://doi.org/10.1016/j.jallcom.2005.02.013

    Article  CAS  Google Scholar 

  43. F. Özkalaycı, M.R. Kaçal, O. Agar, H. Polat, A. Sharma, F. Akman, Lead(II) chloride effects on nuclear shielding capabilities of polymer composites. J. Phys. Chem. Solids. 145, 109543 (2020). https://doi.org/10.1016/j.jpcs.2020.109543

    Article  CAS  Google Scholar 

  44. F. Ozel, F. Akman, M.R. Kaçal et al., Production of microstructured BaZrO3 and Ba2P2O7-based polymer shields for protection against ionizing photons. J. Phys. Chem. Solids. 158, 110238 (2021). https://doi.org/10.1016/j.jpcs.2021.110238

    Article  CAS  Google Scholar 

  45. M.H.A. Mhareb, Y.S.M. Alajerami, M.I. Sayyed et al., Radiation shielding, structural, physical, and optical properties for a series of borosilicate glass. J. Non Cryst. Solids. 550, 120360 (2020). https://doi.org/10.1016/J.JNONCRYSOL.2020.120360

    Article  CAS  Google Scholar 

  46. F. Akman, H. Ogul, I. Ozkan et al., Study on gamma radiation attenuation and non-ionizing shielding effectiveness of niobium-reinforced novel polymer composite. Nucl. Eng. Technol. (2021). https://doi.org/10.1016/j.net.2021.07.006

    Article  Google Scholar 

Download references

Acknowledgements

This research project was funded by the Deanship of Scientific Research, Princess Nourah bint Abdulrahman University, through the Program of Research Project Funding After Publication, grant No (43- PRFA-P-83 )

Funding

Princess Nourah bint Abdulrahman University,43- PRFA-P-83

Author information

Authors and Affiliations

Authors

Contributions

DEA, HMZ, HAS, and SAI: wrote the main manuscript text; HAS, HMA, AWA, and SAI: prepared and drown all figures; AWA, DEA, HMA, and HMZ: contributing to preparing the used composites materials; All authors reviewed and revised the manuscript.

Corresponding author

Correspondence to Hesham M. H. Zakaly.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2315 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaly, H.M.H., Abulyazied, D.E., Issa, S.A.M. et al. Optical, Microhardness, and Radiation Shielding Properties of Rare Earth Doped Strontium Barium Titanate Polyvinylidene Fluoride Nanocomposites. J Inorg Organomet Polym 33, 1177–1190 (2023). https://doi.org/10.1007/s10904-023-02564-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02564-5

Keywords

Navigation