Skip to main content
Log in

Transition Metal Doped Boron Nitride Nanocages as High Performance Nonlinear Optical Materials: A DFT Study

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In the current study, the exohedral doping of transition metals (TMs) in B12N12 nanocages is explored as a new approach to enhance the NLO response and electronic properties. In this regard, a thorough investigation of exohedrally doped B12N12 nanocages (M@x-Bl2N12; where M is for transition metals included Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, and x = b64, b66, r6 and r4) is performed. The TMs are doped over the bonds of BN (b64/b66), above four (r4) and six membered rings (r6). The spin polarized calculation data reveal that the most stable spin state increases from scandium (doublet) to manganese (sextet) and then decreases up to zinc (singlet). The binding energies of most of the complexes are in the range of − 12 kcal/mol to − 48 kcal/mol. NBO charges and bond order analysis are used to justify the nature and strength of interactions between TM and Bl2N12 nano-cage. TMs over B12N12 cause a significant reduction in the EH-L gap regardless of their doping position or atomic number. The highest decrease in EH-L gaps is observed in the case of Sc@b66-B12N12 (1.70 eV) compared to the bare B12N12 nano-cage (6.14 eV). This appreciable decrease in EH-L gap is observed due to generation of new energy level above the original HOMO of bare B12N12 nanocage. TMs doping causes a potential increase in the first hyperpolarizability (β0) to 1.39 × 104 au for Sc@b64-B12N12 complex. TMs doped nanocages showed comparable NLO response to that of alkali metals doped analogues, which are considered best as best candidates for NLO response. These results will promote TMs doped B12N12 nanocage as a suitable candidate for designing potential NLO materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. Shirai, Electronic structures and mechanical properties of boron and boron-rich crystals (part I). J. Superhard Mater. 32(3), 205–225 (2010)

    Article  Google Scholar 

  2. L.H. Li, Y. Chen, Atomically thin boron nitride: unique properties and applications. Adv. Func. Mater. 26(16), 2594–2608 (2016)

    Article  CAS  Google Scholar 

  3. S. Madakbaş, E. Çakmakçı, M.V. Kahraman, Preparation and thermal properties of polyacrylonitrile/hexagonal boron nitride composites. Thermochim. Acta 552, 1–4 (2013)

    Article  Google Scholar 

  4. C. Liu et al., Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 141(7), 2884–2888 (2019)

    Article  CAS  PubMed  Google Scholar 

  5. M.G. Rasul et al., 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5(1), 1–18 (2021)

    Article  Google Scholar 

  6. K. Wu et al., Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 32(8), 1906939 (2020)

    Article  CAS  Google Scholar 

  7. L. Cao et al., Spherical superstructure of boron nitride nanosheets derived from boron-containing metal–organic frameworks. J. Am. Chem. Soc. 142(19), 8755–8762 (2020)

    Article  PubMed  Google Scholar 

  8. J. Zhang et al., Synergistic influence from the hybridization of boron nitride and graphene oxide nanosheets on the thermal conductivity and mechanical properties of polymer nanocomposites. Compos. Sci. Technol. 151, 252–257 (2017)

    Article  CAS  Google Scholar 

  9. R. Haubner et al., Boron nitrides—properties, synthesis and applications, in High performance non-oxide ceramics II. (Springer, 2002), pp.1–45

    Google Scholar 

  10. M. Mirzaei, M. Giahi, Computational studies on boron nitride and boron phosphide nanotubes: density functional calculations of boron-11 electric field gradient tensors. Physica E 42(5), 1667–1669 (2010)

    Article  CAS  Google Scholar 

  11. D. Golberg et al., Insights into the structure of BN nanotubes. Appl. Phys. Lett. 77(13), 1979–1981 (2000)

    Article  CAS  Google Scholar 

  12. D. Sánchez-Portal, E. Hernandez, Vibrational properties of single-wall nanotubes and monolayers of hexagonal BN. Phys. Rev. B 66(23), 235415 (2002)

    Article  Google Scholar 

  13. A. Soltani et al., Sensitivity of BN nano-cages to caffeine and nicotine molecules. Superlattices Microstruct. 76, 315–325 (2014)

    Article  CAS  Google Scholar 

  14. M.T. Baei et al., A computational study of adenine, uracil, and cytosine adsorption upon AlN and BN nano-cages. Physica B 444, 6–13 (2014)

    Article  CAS  Google Scholar 

  15. J. Wang et al., Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2, 6–34 (2017)

    Article  Google Scholar 

  16. H.-S. Wu et al., Structure and stability of boron nitrides: the B28N28 isomers. J. Mol. Struct. 714(2–3), 153–155 (2005)

    Article  CAS  Google Scholar 

  17. G. Seifert et al., Boron-nitrogen analogues of the fullerenes: electronic and structural properties. Chem. Phys. Lett. 268(5–6), 352–358 (1997)

    Article  CAS  Google Scholar 

  18. M. Monajjemi, M. Khaleghian, EPR study of electronic structure of [CoF6] 3−and B18N18 nano ring field effects on octahedral complex. J. Cluster Sci. 22(4), 673–692 (2011)

    Article  CAS  Google Scholar 

  19. D.L. Strout, Fullerene-like cages versus alternant cages: isomer stability of B13N13, B14N14, and B16N16. Chem. Phys. Lett. 383(1–2), 95–98 (2004)

    Article  CAS  Google Scholar 

  20. H.-S. Wu et al., Boron nitride cages from B12N12 to B36N36: square–hexagon alternants vs boron nitride tubes. J. Mol. Model. 12(5), 537–542 (2006)

    Article  CAS  PubMed  Google Scholar 

  21. N. Hou, Y.Y. Wu, J.Y. Liu, Theoretical studies on structures and nonlinear optical properties of alkali doped electrides B12N12–M (M= Li, Na, K). Int. J. Quantum Chem. 116(17), 1296–1302 (2016)

    Article  CAS  Google Scholar 

  22. D.L. Strout, Structure and stability of boron nitrides: isomers of B12N12. J. Phys. Chem. A 104(15), 3364–3366 (2000)

    Article  CAS  Google Scholar 

  23. M. Abbasi, E. Nemati-Kande, M.D. Mohammadi, Doping of the first row transition metals onto B12N12 nanocage: a DFT study. Comput. Theor. Chem. 1132, 1–11 (2018)

    Article  CAS  Google Scholar 

  24. E. Shakerzadeh, N. Barazesh, S.Z. Talebi, A comparative theoretical study on the structural, electronic and nonlinear optical features of B12N12 and Al12N12 nanoclusters with the groups III, IV and V dopants. Superlattices Microstruct. 76, 264–276 (2014)

    Article  CAS  Google Scholar 

  25. J. Iqbal, K. Ayub, Enhanced electronic and non-linear optical properties of alkali metal (Li, Na, K) doped boron nitride nano-cages. J. Alloy. Compd. 687, 976–983 (2016)

    Article  Google Scholar 

  26. R. Bano et al., Superalkali (Li2F, Li3F) doped Al12N12 electrides with enhanced static, dynamic nonlinear optical responses and refractive indices. Mater. Sci. Semicond. Process. 143, 106518 (2022)

    Article  CAS  Google Scholar 

  27. S. Sajjad et al., Janus alkaline earthides with excellent NLO response from sodium and potassium as source of excess electrons; a first principles study. J. Mol. Graph. Model. 100, 107668 (2020)

    Article  CAS  PubMed  Google Scholar 

  28. J. Iqbal, K. Ayub, Theoretical study of the non linear optical properties of alkali metal (Li, Na, K) doped aluminum nitride nanocages. RSC Adv. 6(96), 94228–94235 (2016)

    Article  Google Scholar 

  29. S. Munsif et al., Remarkable nonlinear optical response of alkali metal doped aluminum phosphide and boron phosphide nanoclusters. J. Mol. Liq. 271, 51–64 (2018)

    Article  CAS  Google Scholar 

  30. M. Niu et al., Doping the alkali atom: an effective strategy to improve the electronic and nonlinear optical properties of the inorganic Al12N12 nanocage. Inorg. Chem. 53(1), 349–358 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. F. Ullah et al., Design of novel inorganic alkaline earth metal doped aluminum nitride complexes (AEM@ Al12N12) with high chemical stability, improved electronic properties and large nonlinear optical response. Optik 207, 163792 (2020)

    Article  CAS  Google Scholar 

  32. S. Irshad et al., First row transition metals decorated boron phosphide nanoclusters as nonlinear optical materials with high thermodynamic stability and enhanced electronic properties; a detailed quantum chemical study. Opt. Laser Technol. 134, 106570 (2021)

    Article  CAS  Google Scholar 

  33. N. Kosar et al., Halides encapsulation in aluminum/boron phosphide nanoclusters: an effective strategy for high cell voltage in Na-ion battery. Mater. Sci. Semicond. Process. 97, 71–79 (2019)

    Article  CAS  Google Scholar 

  34. J. Iqbal, R. Ludwig, K. Ayub, Phosphides or nitrides for better NLO properties? A detailed comparative study of alkali metal doped nano-cages. Mater. Res. Bull. 92, 113–122 (2017)

    Article  Google Scholar 

  35. K. Ayub, Transportation of hydrogen atom and molecule through X12Y12 nano-cages. Int. J. Hydrogen Energy 42(16), 11439–11451 (2017)

    Article  CAS  Google Scholar 

  36. S. Alvarez, J. Cirera, How high the spin? Allowed and forbidden spin states in transition-metal chemistry. Angew. Chem. Int. Ed. 45(19), 3012–3020 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YA: writing—original draft preparation, MA: data curation, MY: conceptualization. TB: methodology, software, KA: supervision, writing—reviewing and editing,

Corresponding author

Correspondence to Khurshid Ayub.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, Y., Asghar, M., Yar, M. et al. Transition Metal Doped Boron Nitride Nanocages as High Performance Nonlinear Optical Materials: A DFT Study. J Inorg Organomet Polym 33, 943–955 (2023). https://doi.org/10.1007/s10904-023-02546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02546-7

Keywords

Navigation