Skip to main content
Log in

EPR Study of Electronic Structure of [CoF6]3−and B18N18 Nano Ring Field Effects on Octahedral Complex

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Density functional theory calculations (DFT), as well as hybrid methods (B3LYP) for B18N18-[CoF6]3− complex have been carried out to study the non-bonded interaction. The geometry of the B18N18 has been optimized at B3LYP method with EPR-II basis set and geometry of the [CoF6]3− have been optimized at B3LYP method with Def2-TZVP basis set and Stuttgart RSC 1997 Effective Core Potential. The electromagnetic interactions of the [CoF6]3− molecule embedded in the B18N18 Nano ring have been investigated at B3LYP and total atomic charges, spin densities, dipole moment and isotropic Fermi coupling constants parameters in different loops and bonds of the B18N18-[CoF6]3− system have been calculated. Also NBO analysis such as electronic delocalization between donor and acceptor bonds has been studied by DFT method. Then we have been investigated the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) for the lowest energy have been derived to estimate the structural stability of the B18N18-[CoF6]3− system, and the coefficients of s, p and d orbitals of Co-F bonds involved in B18N18-[CoF6]3−.Thus, hybridization of Co and F atoms can be distinguished based on these NBO data. The Gaussian quantum chemistry package is used for all calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DFT:

Density functional theory

EPR:

Electron paramagnetic resonance

HOMOL:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

ECP:

Effective core potential

NICS:

Nuclear independent chemical shift

LCAO:

Linear combination of atomic orbitals

References

  1. P. W. Fowler, K. M. Rogers, G. Seifert, M. Terrones, and H. Terrones (1999). Chem. Phys. Lett. 299, 359.

    Article  CAS  Google Scholar 

  2. Y. Liu, Z. Wenli, B. B. Isaac, and J. E. Boggs (2009). J. Chem. Phys. 30, 184305.

    Article  Google Scholar 

  3. A. Loiseau, F. Willaime, N. Demoncy, N. Schramchenko, and G. Hug (1998). Carbon 36, 743–752.

    Article  CAS  Google Scholar 

  4. M. L. Sun, Z. Slanina, and S. L. Lee (1995). Chem. Phys. Lett. 233, 279.

    Article  CAS  Google Scholar 

  5. M. Monajjemi, H. Aghaie, and F. Naderi (2007). Biochemistry (Moscow) 72, 799.

    Article  Google Scholar 

  6. O. Takeo, K. Masaki, K. Hidehiko, and N. Ichihito (2001). Int. J. Inorg. Mater. 3, 597.

    Article  Google Scholar 

  7. S. H. Xu, M. Y. Zhang, Y. Y. Zhao, B. G. Cheng, J. Zhang, and C. C. Sun (2006). Chem. Phys. Lett. 418, 297.

    Article  CAS  Google Scholar 

  8. D. L. Strout (2000). J. Phys. Chem. A 104, 3364.

    Article  CAS  Google Scholar 

  9. D. L. Strout (2001). J. Phys. Chem. A 105, 261.

    Article  CAS  Google Scholar 

  10. D. L. Strout (2004). Chem. Phys. Lett. 383, 95.

    Article  CAS  Google Scholar 

  11. S. S. Alexandre, M. S. C. Mazzoni, and H. Chacham (1999). Appl. Phys. Lett. 75, 61.

    Article  CAS  Google Scholar 

  12. S. S. Alexandre, R. W. Nunes, and H. Chacham (2002). Phys. Rev. B 66, 085.

    Article  Google Scholar 

  13. H. S. Wu and H. J. Jiao (2004). Chem. Phys. Lett. 386, 369.

    Article  CAS  Google Scholar 

  14. H. S. Wu, X. H. Xu, D. L. Strout, and H. J. Jiao (2005). J. Mol. Model. 12, 1.

    Article  Google Scholar 

  15. K. W. Rogers, P. W. Fowler, and G. Seifert (2000). Chem. Phys. Lett. 332, 43.

    Article  CAS  Google Scholar 

  16. M. Monajjemi, L. Mahdavian, and F. Mollaamin (2008). Bull. Chem. Soc. Ethio. 22, 1.

    Google Scholar 

  17. F. Mollaamin, S. Gharibe, and M. Monajjemi (2011). Int. J. Phys. Sci. 6, 1496.

    CAS  Google Scholar 

  18. M. Monajjemi, H. Chegini, F. Mollaamin, and P. Farahani (2011). Fullerenes, Nanotub Carbon Nanostructure 19, 469.

    Article  CAS  Google Scholar 

  19. F. Mollaamin, F. Najafi, M. Khaleghian, B. Khalili Hadad, and M. Monajjemi (2011). Fullerenes, Nanotub Carbon Nanostructures 19, 653.

    Article  CAS  Google Scholar 

  20. L. B. Knight Jr, D. W. Hill, T. J. Kirk, and C. A. Arrington (1992). J. Phys. Chem. 96, 555.

    Article  CAS  Google Scholar 

  21. Z. Slanina, J. M. L. Martin, J. P. Franqois, and R. Gijbels (1993). Chem. Phys. Lett. 201, 54.

    Article  CAS  Google Scholar 

  22. Z. Slanina, J. M. L. Martin, J. P. Franqoisand, and R. Gijbels (1993). Chem. Phys. 178, 77.

    Article  CAS  Google Scholar 

  23. M. Monajjemi, L. Mahdavian, F. Mollaamin, and M. Khaleghian (2009). Rus. J. Inorg. Chem. 54, 1465–1473.

    Article  Google Scholar 

  24. S. Iijima and T. Ichihashi (1993). Nature 363, 603.

    Article  CAS  Google Scholar 

  25. P. M. Ajayan (1999). Chem. Rev. 99, 1787.

    Article  CAS  Google Scholar 

  26. R. F. Curl and R. E. Smalley (1988). Science 242, 1017.

    Article  CAS  Google Scholar 

  27. H. Y. Zhu, D. J. Klein, W. A. Seitz, and N. H. March (1995). Inorg. Chem. 34, 1377.

    Article  CAS  Google Scholar 

  28. S. M. Glauciete and G. Edgardo (2005). Chem. Phys. Lett. 409, 29.

    Article  Google Scholar 

  29. D. K. Hoffman, R. Ruedenberg, and J. G. Verkade (1977). Struct. Bond. 33, 57.

    Article  CAS  Google Scholar 

  30. M. Monajjemi, V. S. Lee, M. Khaleghian, B. Honarparvar, and F. Mollaamin (2010). J. Phys. Chem. C 114, 15315.

    Article  CAS  Google Scholar 

  31. A. D. Becke (1993). J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr (1998). Phys. Rev. B 37, 785.

    Article  Google Scholar 

  33. D. Golberg, Y. Bando, O. Stephan, and K. Kurashima (1998). Appl. Phys. Lett. 73, 2441.

    Article  CAS  Google Scholar 

  34. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Raghavachari, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople (1998) Gaussian 98 Revision A.7, Gaussian, Inc., Pittsburgh.

  35. K. Oku, A. Nishiwaki, I. Narita, and M. Gonda (2003). Chem. Phys. Lett. 380, 620.

    Article  CAS  Google Scholar 

  36. E. C. Behrman, R. K. Foehrweiser, J. R. Myers, B. R. French, and M. E. Zandler (1994). Phys. Rev. A 49, R1543.

    Article  CAS  Google Scholar 

  37. R. B. Zhang, T. Z. Huyskensd, A. Ceulemeans, and M. T. Nguyen (2005). Chem. Phys. 316, 35.

    Article  CAS  Google Scholar 

  38. J. P. Foster and F. Weinhold (1980). J. Am. Chem. Soc. 102, 7211.

    Article  CAS  Google Scholar 

  39. M. Monajjemi, M. T. Azad, H. H. Haeri, K. Zare, and Sh. Hamedani (2003). J. Chem. Res. 1, (8), 454.

    Article  Google Scholar 

  40. L. Goodman, V. Pophristic, and F. Weinhold (1999). Acc. Chem. Res. 32, 983.

    Article  CAS  Google Scholar 

  41. A. E. Reed and F. Weinhold (1985). J. Am. Chem. Soc. 107, 1919.

    Article  CAS  Google Scholar 

  42. W. K. Myers, C. P. Scholes, and D. L. Tierney (2009). J. Am. Chem. Soc. 9, 131.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Monajjemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monajjemi, M., Khaleghian, M. EPR Study of Electronic Structure of [CoF6]3−and B18N18 Nano Ring Field Effects on Octahedral Complex. J Clust Sci 22, 673–692 (2011). https://doi.org/10.1007/s10876-011-0414-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0414-2

Keywords

Navigation